Comparison of Global Aboveground Biomass Estimates From Satellite Observations and Dynamic Global Vegetation Models

被引:1
|
作者
El Masri, Bassil [1 ]
Xiao, Jingfeng [2 ]
机构
[1] Murray State Univ, Dept Earth & Environm Sci, Murray, KY 42071 USA
[2] Univ New Hampshire, Earth Syst Res Ctr, Inst Study Earth Oceans & Space, Durham, NH USA
关键词
above ground biomass; remote sensing; LIDAR; carbon stocks; land surface model; WAVE-FORM LIDAR; FOREST;
D O I
10.1029/2024JG008305
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The global forest carbon stocks represent the amount of carbon stored in woody vegetation and are important for quantifying the ability of the global forests to sequester atmospheric CO2 and to provide ecosystem services (e.g., timber) under climate change. The forest ecosystem carbon pool estimates are highly variable and poorly quantified in areas lacking forest inventory estimates. Here, we compare and analyze aboveground biomass (AGB) estimates from five satellite-based global data sets and nine dynamic global vegetation models (DVGMs). We find that across the data sets, mean AGB exhibits the largest variability around the tropical area. In addition, AGB shows a similar latitudinal trend but large variability among the data sets. Satellite-based AGB estimates are lower than those simulated by DVGMs. The divergence among the satellite-based AGB estimates can be driven by the methodology, input satellite products, and the forested areas used to estimate AGB. The modeled NPP, autotrophic respiration, and carbon allocation mostly drive the variability of AGB simulated by DGVMs. The future availability of a high-quality global forest area map is anticipated to improve AGB estimate accuracy and to reduce the discrepancies among different satellite- and model-based AGB estimates. We suggest the carbon-modeling community reexamine the methodology used to estimate AGB and forested areas for a more robust global forest carbon stock estimation.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] The use of dynamic global vegetation models for simulating hydrology and the potential integration of satellite observations
    Murray, S. J.
    Watson, I. M.
    Prentice, I. C.
    PROGRESS IN PHYSICAL GEOGRAPHY-EARTH AND ENVIRONMENT, 2013, 37 (01): : 63 - 97
  • [2] Global vegetation biomass production efficiency constrained by models and observations
    He, Yue
    Peng, Shushi
    Liu, Yongwen
    Li, Xiangyi
    Wang, Kai
    Ciais, Philippe
    Arain, M. Altaf
    Fang, Yuanyuan
    Fisher, Joshua B.
    Goll, Daniel
    Hayes, Daniel
    Huntzinger, Deborah N.
    Ito, Akihiko
    Jain, Atul K.
    Janssens, Ivan A.
    Mao, Jiafu
    Campioli, Matteo
    Michalak, Anna M.
    Peng, Changhui
    Penuelas, Josep
    Poulter, Benjamin
    Qin, Dahe
    Ricciuto, Daniel M.
    Schaefer, Kevin
    Schwalm, Christopher R.
    Shi, Xiaoying
    Tian, Hanqin
    Vicca, Sara
    Wei, Yaxing
    Zeng, Ning
    Zhu, Qiuan
    GLOBAL CHANGE BIOLOGY, 2020, 26 (03) : 1474 - 1484
  • [3] Comparison of forest above-ground biomass from dynamic global vegetation models with spatially explicit remotely sensed observation-based estimates
    Yang, Hui
    Ciais, Philippe
    Santoro, Maurizio
    Huang, Yuanyuan
    Li, Wei
    Wang, Yilong
    Bastos, Ana
    Goll, Daniel
    Arneth, Almut
    Anthoni, Peter
    Arora, Vivek K.
    Friedlingstein, Pierre
    Harverd, Vanessa
    Joetzjer, Emilie
    Kautz, Markus
    Lienert, Sebastian
    Nabel, Julia E. M. S.
    O'Sullivan, Michael
    Sitch, Stephen
    Vuichard, Nicolas
    Wiltshire, Andy
    Zhu, Dan
    GLOBAL CHANGE BIOLOGY, 2020, 26 (07) : 3997 - 4012
  • [4] An update on global atmospheric ice estimates from satellite observations and reanalyses
    Duncan, David Ian
    Eriksson, Patrick
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2018, 18 (15) : 11205 - 11219
  • [5] Global biomass maps can increase the precision of (sub)national aboveground biomass estimates: A comparison across tropical countries
    Malaga, Natalia
    de Bruin, Sytze
    Mcroberts, Ronald E.
    Naesset, Erik
    Paiva, Ricardo de la Cruz
    Olivos, Alexs Arana
    Montesinos, Patricia Duran
    Baboolall, Mahendra
    Odorico, Hercilo Sancho Carlos
    Soares, Muri Gonsalves
    Joa, Sergio Sima
    Zahabu, Eliakimu
    Silayo, Dos Santos
    Herold, Martin
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 947
  • [6] GLOBAL VEGETATION DYNAMIC MONITORING USING MULTIPLE SATELLITE OBSERVATIONS, 2002-2007
    Yang, Le
    Du, Hejuan
    Zhao, Jing
    Liu, Qinhuo
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 771 - 774
  • [7] Global spatial and temporal distribution of vegetation fire as determined from satellite observations
    Dwyer, E
    Pinnock, S
    Grégoire, JM
    Pereira, JMC
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2000, 21 (6-7) : 1289 - 1302
  • [8] A global comparison of Argo and satellite altimetry observations
    Dhomps, A. -L.
    Guinehut, S.
    Le Traon, P. -Y.
    Larnicol, G.
    OCEAN SCIENCE, 2011, 7 (02) : 175 - 183
  • [9] Discrepancies with satellite observations in the spatial structure of global precipitation as derived from global climate models
    Tapiador, Francisco J.
    Navarro, Andres
    Jimenez, Alfonso
    Moreno, Raul
    Garcia-Ortega, Eduardo
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2018, 144 : 419 - 435
  • [10] Simplest dynamic models of the global vegetation pattern
    Svirezhev, YM
    ECOLOGICAL MODELLING, 1999, 124 (2-3) : 131 - 144