Comparison of Concentric Surface Planetary Explorations Using an Ackerman Rover in a Lunar Simulation

被引:0
|
作者
Gonzalez-Santamarta, Miguel A. [1 ]
Rodriguez-Lera, Francisco J. [1 ]
机构
[1] Univ Leon, Dept Mech Engn Comp & Aerosp Sci, Robot Grp, Leon 24006, Spain
关键词
D O I
10.1109/iSpaRo60631.2024.10685849
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Automatic planetary exploration is the task of exploring the planetary surfaces using robots. While rovers like Curiosity and Perseverance have been utilized for planetary exploration, the testing of spiral and radial exploration techniques and the integration of new technology present challenges, mainly due to difficulties in replicating authentic planetary conditions. Thus, this paper presents the updates to the public repository of our simulated rover and lunar environment [1] to deploy a comparison of concentric exploration approaches within a simulated lunar environment. The simulation involves a six-wheel Ackerman rover leveraging various ROS 2 tools to navigate and explore the lunar surface. Results show that the radial exploration technique is better for performing the concentric exploration surface since the rover requires less time and traveled distance to explore the lunar surface.
引用
收藏
页码:239 / 244
页数:6
相关论文
共 25 条
  • [1] Planetary Rover Simulation for Lunar Exploration Missions
    Allan, Mark
    Wong, Uland
    Furlong, P. Michael
    Rogg, Arno
    McMichael, Scott
    Welsh, Terry
    Chen, Ian
    Peters, Steven
    Gerkey, Brian
    Quigley, Morgan
    Shirley, Mark
    Deans, Matthew
    Cannon, Howard
    Fong, Terry
    2019 IEEE AEROSPACE CONFERENCE, 2019,
  • [2] Mission support role of a planetary rover for lunar surface analysis
    Yoshioka, N
    Ichikawa, M
    Itagaki, H
    SPACE 2000, PROCEEDINGS, 2000, : 784 - 790
  • [3] Analysis and Test of the Driving Wheel of Planetary Rover in Simulated Lunar Surface
    Huang, Yuxin
    Wang, Tongyu
    Lin, Lin
    Wang, Limeng
    Zhang, Hu
    ADVANCES IN MACHINING AND MANUFACTURING TECHNOLOGY XII, 2014, 589-590 : 701 - 707
  • [4] Modeling and Simulation of Planetary Rover Using Modelica
    Sun Shuai
    Wang Lei
    Li Zhiping
    Gu Peng
    Feng Yuting
    Sun Yujia
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 7582 - 7586
  • [5] Crater identification simulation using LiDAR on Lunar rover
    Zhou, Yier
    Li, Xiaolu
    Hua, Baocheng
    MEASUREMENT, 2023, 210
  • [6] Numerical Simulation of Characteris of Electrostatic Migration of Lunar Dust near a Rover on the Lunar Surface
    Qian X.
    Zhang Y.
    Fang Z.
    Yang J.
    Fang Y.
    Li S.
    Yuhang Xuebao/Journal of Astronautics, 2024, 45 (04): : 613 - 624
  • [7] Scientific exploration of lunar surface using a rover in Japanese future lunar mission
    Sasaki, S
    Kubota, T
    Okada, T
    Saiki, K
    Kuroda, Y
    Kunii, Y
    Shibamura, E
    Akiyama, N
    Ohtake, M
    Ichikawa, M
    Higa, M
    Hirata, N
    Sugihara, T
    Haruyama, J
    Otake, H
    Yoshioka, N
    Terazono, J
    Yamada, M
    Yamaguchi, Y
    Kodama, S
    LUNAR EXPLORATION 2000, 2002, 30 (08): : 1921 - 1926
  • [8] Positioning of a lunar surface rover on the south pole using LCNS and DEMs
    Audet, Yoann
    Melman, Floor Thomas
    Molli, Serena
    Sesta, Andrea
    Plumaris, Michael
    Psychas, Dimitrios
    Swinden, Richard
    Giordano, Pietro
    Ventura-Traveset, Javier
    ADVANCES IN SPACE RESEARCH, 2024, 74 (06) : 2532 - 2550
  • [9] Trafficability Analysis for Lunar/Planetary Exploration Rover using Thrust-Cornering Characteristic Diagram
    Ishigami, Genya
    Nagatani, Keiji
    Yoshida, Kazuya
    2008 IEEE/RSJ INTERNATIONAL CONFERENCE ON ROBOTS AND INTELLIGENT SYSTEMS, VOLS 1-3, CONFERENCE PROCEEDINGS, 2008, : 2228 - +
  • [10] Novelty detection in rover-based planetary surface images using autoencoders
    Stefanuk, Braden
    Skonieczny, Krzysztof
    FRONTIERS IN ROBOTICS AND AI, 2022, 9