Pt decorated (CoMnFeCrNi)3O4 high-entropy oxide for low-temperature combustion of C3H8

被引:0
|
作者
Xie, Lihong [1 ]
Dun, Yaohun [1 ]
Wang, Qiji [1 ]
Xu, Jie [1 ]
Li, Song [2 ]
Chen, Rong [3 ]
Du, Chun [1 ]
Shan, Bin [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, Wuhan 430074, Hubei, Peoples R China
[2] Northeastern Univ, Sch Mat Sci & Engn, Key Lab Anisotropy & Texture Mat, Shenyang 110819, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
High-entropy oxides; Propane combustion; Pt-based catalyst; Atomic layer deposition; CO OXIDATION; OXYGEN; CATALYSTS; PROPANE; SURFACE; NANOCLUSTERS; PERFORMANCE; MN;
D O I
10.1016/j.fuel.2025.135090
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
High-entropy oxides (HEOs) have attracted significant attention as catalyst materials due to their unique high- entropy effect. However, their catalytic performance is often limited by a low specific surface area, a result of high-temperature synthesis. In this study, we prepared (CoMnFeCrNi)3O4 catalysts with high surface areas using the solution combustion synthesis method. Subsequently, Pt/(CoMnFeCrNi)3O4 composite catalysts for C3H8 combustion were synthesized through atomic layer deposition. Comprehensive characterizations confirmed the single spinel structure of the HEOs and the high dispersion of the loaded Pt nanoparticles. Notably, the best- performing Pt/(CoMnFeCrNi)3O4 composite catalyst exhibited remarkable C3H8 combustion activity, achieving 90% conversion of C3H8 at 302 degrees C, while maintaining good stability and water resistance. This performance enhancement is attributed to the activation of oxygen species at the Pt-HEO interface, which facilitates the decomposition of formate species during C3H8 combustion.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Preparation and Characterization of New (FeCoCrMnCuZn)3O4 High-entropy Oxide
    Liang Bingliang
    Wang Yiliang
    Ai Yunlong
    Ouyang Sheng
    Liu Changhong
    Yu Feng
    Zhang Jianjun
    RARE METAL MATERIALS AND ENGINEERING, 2021, 50 (09) : 3422 - 3426
  • [2] Dielectric properties of (FeCoCrMnZn)3O4 high-entropy oxide at high pressure
    Zheng, Zhi
    Liang, Bingliang
    Gao, Jing
    Ren, Jianyi
    Liu, Zhiyong
    Hou, Xue
    Sun, Jianhui
    Mei, Shenghua
    CERAMICS INTERNATIONAL, 2023, 49 (20) : 32521 - 32527
  • [3] High-entropy oxide (FeCoNiCrMn)3O4 for room-temperature NO2 sensors
    Li, Xinchao
    Chang, Xiao
    Liu, Xianghong
    Zhang, Jun
    APPLIED PHYSICS LETTERS, 2024, 124 (22)
  • [4] CATALYTIC COMBUSTION OF C3H8 ON PT COATED MONOLITH
    WAMPLER, FB
    CLARK, DW
    GAINES, FA
    COMBUSTION SCIENCE AND TECHNOLOGY, 1976, 14 (1-3) : 25 - 31
  • [5] Hopping conductivity and low-temperature magnetoresistance of high-entropy (Mn,Fe,Ni,Co,Zn)3O4 polycrystalline ceramics
    Kubisztal, Marian
    CERAMICS INTERNATIONAL, 2023, 49 (11) : 19442 - 19450
  • [6] Synthesis and electrochemical performance of novel high-entropy spinel oxide (FeCoMgCrLi)3O4
    Che, Chengjiao
    Bi, Jianqiang
    Zhang, Xihua
    Yang, Yao
    Wang, Hongyi
    Rong, Jiacheng
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2024, 974
  • [7] Nanocrystalline (CrMnFeCoCu)3O4 High-Entropy Oxide for Efficient Oxygen Evolution Reaction
    He, Xuanmeng
    Zhang, Zeqin
    Qiao, Tong
    Liu, Hui
    Jiang, Xianwei
    Xing, Tengfei
    Wang, Shaolan
    ACS APPLIED NANO MATERIALS, 2023, 6 (21) : 19573 - 19580
  • [8] Electrochemical corrosion behavior of spinel-like high-entropy oxide (CrMnFeCoNi)3O4 and (CrMnFeCoZr)3O4/epoxy coatings
    Lei, Yanhua
    Liu, Hui
    Zhang, Fei
    Jiang, Bochen
    Xu, Jingxiang
    MATERIALS LETTERS, 2024, 370
  • [9] Electrochemical energy storage and rectification performance of high-entropy oxide (CrMnFeCoNi)3O4
    Chen, Bi
    Zhang, Wei-Bin
    Yin, Yi
    Feng, Jie
    Yang, Fan
    Yang, Kang
    Liu, Xin-Yu
    Ma, Xue-Jing
    Peng, Ying
    JOURNAL OF ENERGY STORAGE, 2025, 109
  • [10] Low-temperature synthesis of porous high-entropy (CoCrFeMnNi)3O4 spheres and their application to the reverse water-gas shift reaction as catalysts
    Taniguchi, Ayano
    Fujita, Takeshi
    Kobiro, Kazuya
    DALTON TRANSACTIONS, 2024, 53 (19) : 8124 - 8134