Quantum Phase Estimation by Compressed Sensing

被引:0
|
作者
Yi, Changhao [1 ,2 ,3 ,4 ]
Zhou, Cunlu [5 ,6 ,7 ,8 ]
Takahashi, Jun [9 ]
机构
[1] Fudan Univ, Dept Phys, State Key Lab Surface Phys, Shanghai, Peoples R China
[2] Fudan Univ, Ctr Field Theory & Particle Phys, Shanghai, Peoples R China
[3] Fudan Univ, Inst Nanoelect Devices & Quantum Comp, Shanghai, Peoples R China
[4] Shanghai Res Ctr Quantum Sci, Shanghai, Peoples R China
[5] Univ Sherbrooke, Dept Comp Sci, Sherbrooke, PQ, Canada
[6] Univ Sherbrooke, Inst Quant, Sherbrooke, PQ, Canada
[7] Univ New Mexico, Ctr Quantum Informat & Control, Albuquerque, NM USA
[8] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM USA
[9] Univ Tokyo, Inst Solid State Phys, Chiba, Japan
来源
QUANTUM | 2024年 / 8卷
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
SIGNAL RECOVERY; RECONSTRUCTION; ALGORITHMS; FOURIER;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
As a signal recovery algorithm, compressed sensing is particularly effective when the data has low complexity and samples are scarce, which aligns natually with the task of quantum phase estimation (QPE) on early fault-tolerant quantum computers. In this work, we present a new Heisenberg-limited, robust QPE algorithm based on compressed sensing, which requires only sparse and discrete sampling of times. Specifically, given multiple copies of a suitable initial state and queries to a specific unitary matrix, our algorithm can recover the phase with a total runtime of O (& varepsilon; - 1 polylog(& varepsilon; - 1 )), where & varepsilon; is the desired accuracy. Additionally, the maximum runtime satisfies T max & varepsilon; << pi, making it comparable to state-of-the-art algorithms. Furthermore, our result resolves the basis mismatch problem in certain cases by introducing an additional parameter to the traditional compressed sensing framework.
引用
收藏
页数:32
相关论文
共 50 条
  • [1] Quantum-enhanced multiparameter estimation and compressed sensing of a field
    Baamara, Youcef
    Gessner, Manuel
    Sinatra, Alice
    SCIPOST PHYSICS, 2023, 14 (03):
  • [2] Characteristics Optimization via Compressed Sensing in Quantum State Estimation
    Zheng, Kai
    Li, Kezhi
    Cong, Shuang
    2016 IEEE CONFERENCE ON CONTROL APPLICATIONS (CCA), 2016,
  • [3] DOA estimation based on compressed sensing with gain/phase uncertainties
    Hu, Bin
    Wu, Xiaochuan
    Zhang, Xin
    Yang, Qiang
    Deng, Weibo
    IET RADAR SONAR AND NAVIGATION, 2018, 12 (11): : 1346 - 1352
  • [4] Compressed Sensing-Based DOA Estimation with Antenna Phase Errors
    Liu, Linxi
    Zhang, Xuan
    Chen, Peng
    ELECTRONICS, 2019, 8 (03):
  • [5] Compressed Sensing Phase Retrieval
    Fannjiang, Albert
    Liao, Wenjing
    2011 CONFERENCE RECORD OF THE FORTY-FIFTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS (ASILOMAR), 2011, : 735 - 738
  • [6] Compressed sensing for phase retrieval
    Newton, Marcus C.
    PHYSICAL REVIEW E, 2012, 85 (05):
  • [7] On-line quantum state estimation using continuous weak measurement and compressed sensing
    Shuang Cong
    Yaru Tang
    Sajede Harraz
    Kezhi Li
    Jingbei Yang
    Science China Information Sciences, 2021, 64
  • [8] On-line quantum state estimation using continuous weak measurement and compressed sensing
    Cong, Shuang
    Tang, Yaru
    Harraz, Sajede
    Li, Kezhi
    Yang, Jingbei
    SCIENCE CHINA-INFORMATION SCIENCES, 2021, 64 (08)
  • [9] On-line quantum state estimation using continuous weak measurement and compressed sensing
    Shuang CONG
    Yaru TANG
    Sajede HARRAZ
    Kezhi LI
    Jingbei YANG
    Science China(Information Sciences), 2021, 64 (08) : 238 - 240
  • [10] Compressed sensing phase retrieval with phase diversity
    Qin, Shun
    Hu, Xinqi
    Qin, Qiong
    OPTICS COMMUNICATIONS, 2014, 310 : 193 - 198