A dynamic-static feature fusion learning network for speech emotion recognition

被引:0
|
作者
Xue, Peiyun [1 ,2 ]
Gao, Xiang [1 ]
Bai, Jing [1 ]
Dong, Zhenan [1 ]
Wang, Zhiyu [1 ]
Xu, Jiangshuai [1 ]
机构
[1] Taiyuan Univ Technol, Coll Elect Informat Engn, Taiyuan 030024, Peoples R China
[2] Shanxi Acad Adv Res & Innovat, Taiyuan 030032, Peoples R China
关键词
Speech emotion recognition; Multi-feature Learning Network; Dynamic-Static feature fusion; Hybrid feature representation; Attention mechanism; Cross-corpus; RECURRENT;
D O I
10.1016/j.neucom.2025.129836
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Speech is a paramount mode of human communication, and enhancing the quality and fluency of HumanComputer Interaction (HCI) greatly benefits from the significant contribution of Speech Emotion Recognition (SER). Feature representation poses a persistent challenge in SER. A single feature is difficult to adequately represent speech emotion, while directly concatenating multiple features may overlook the complementary nature and introduce interference due to redundant information. Towards these difficulties, this paper proposes a Multi-feature Learning network based on Dynamic-Static feature Fusion (ML-DSF) to obtain an effective hybrid feature representation for SER. Firstly, a Time-Frequency domain Self-Calibration Module (TFSC) is proposed to help the traditional convolutional neural networks in extracting static image features from the Log-Mel spectrograms. Then, a Lightweight Temporal Convolutional Network (L-TCNet) is used to acquire multi-scale dynamic temporal causal knowledge from the Mel Frequency Cepstrum Coefficients (MFCC). At last, both extracted features groups are fed into a connection attention module, optimized by Principal Component Analysis (PCA), facilitating emotion classification by reducing redundant information and enhancing the complementary information between features. For ensuring the independence of feature extraction, this paper adopts the training separation strategy. Evaluating the proposed model on two public datasets yielded a Weighted Accuracy (WA) of 93.33 % and an Unweighted Accuracy (UA) of 93.12 % on the RAVDESS dataset, and 94.95 % WA and 94.56 % UA on the EmoDB dataset. The obtained results outperformed the State-Of-The-Art (SOTA) findings. Meanwhile, the effectiveness of each module is validated by ablation experiments, and the generalization analysis is carried out on the cross-corpus SER tasks.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Dynamic-Static Cross Attentional Feature Fusion Method for Speech Emotion Recognition
    Dong, Ke
    Peng, Hao
    Che, Jie
    MULTIMEDIA MODELING, MMM 2023, PT II, 2023, 13834 : 350 - 361
  • [2] DSTM: A transformer-based model with dynamic-static feature fusion in speech emotion recognition
    Jin, Guowei
    Xu, Yunfeng
    Kang, Hong
    Wang, Jialin
    Miao, Borui
    COMPUTER SPEECH AND LANGUAGE, 2025, 90
  • [3] HIERARCHICAL NETWORK BASED ON THE FUSION OF STATIC AND DYNAMIC FEATURES FOR SPEECH EMOTION RECOGNITION
    Cao, Qi
    Hou, Mixiao
    Chen, Bingzhi
    Zhang, Zheng
    Lu, Guangming
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 6334 - 6338
  • [4] Feature Fusion of Speech Emotion Recognition Based on Deep Learning
    Liu, Gang
    He, Wei
    Jin, Bicheng
    PROCEEDINGS OF 2018 INTERNATIONAL CONFERENCE ON NETWORK INFRASTRUCTURE AND DIGITAL CONTENT (IEEE IC-NIDC), 2018, : 193 - 197
  • [5] Speech Emotion Recognition Based on Feature Fusion
    Shen, Qi
    Chen, Guanggen
    Chang, Lin
    PROCEEDINGS OF THE 2017 2ND INTERNATIONAL CONFERENCE ON MATERIALS SCIENCE, MACHINERY AND ENERGY ENGINEERING (MSMEE 2017), 2017, 123 : 1071 - 1074
  • [6] Speech emotion recognition using multimodal feature fusion with machine learning approach
    Sandeep Kumar Panda
    Ajay Kumar Jena
    Mohit Ranjan Panda
    Susmita Panda
    Multimedia Tools and Applications, 2023, 82 : 42763 - 42781
  • [7] Speech emotion recognition using feature fusion: a hybrid approach to deep learning
    Khan, Waleed Akram
    ul Qudous, Hamad
    Farhan, Asma Ahmad
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (31) : 75557 - 75584
  • [8] Speech emotion recognition using multimodal feature fusion with machine learning approach
    Panda, Sandeep Kumar
    Jena, Ajay Kumar
    Panda, Mohit Ranjan
    Panda, Susmita
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (27) : 42763 - 42781
  • [9] A FEATURE FUSION METHOD BASED ON EXTREME LEARNING MACHINE FOR SPEECH EMOTION RECOGNITION
    Guo, Lili
    Wang, Longbiao
    Dang, Jianwu
    Zhang, Linjuan
    Guan, Haotian
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 2666 - 2670
  • [10] Enhancing speech emotion recognition through deep learning and handcrafted feature fusion
    Eris, Fatma Gunes
    Akbal, Erhan
    APPLIED ACOUSTICS, 2024, 222