Retinal Imaging-Based Oculomics: Artificial Intelligence as a Tool in the Diagnosis of Cardiovascular and Metabolic Diseases

被引:2
|
作者
Ghenciu, Laura Andreea [1 ,2 ]
Dima, Mirabela [3 ]
Stoicescu, Emil Robert [4 ,5 ,6 ]
Iacob, Roxana [4 ,7 ,8 ]
Boru, Casiana [9 ]
Hategan, Ovidiu Alin [9 ]
机构
[1] Victor Babes Univ Med & Pharm Timisoara, Dept Funct Sci, Eftimie Murgu Sq 2, Timisoara 300041, Romania
[2] Victor Babes Univ Med & Pharm Timisoara, Ctr Translat Res & Syst Med, Eftimie Murgu Sq 2, Timisoara 300041, Romania
[3] Victor Babes Univ Med & Pharm Timisoara, Dept Neonatol, Eftimie Murgu Sq 2, Timisoara 300041, Romania
[4] Politehn Univ Timisoara, Fac Mech, Field Appl Engn Sci, Specializat Stat Methods & Tech Hlth & Clin Res, Mihai Viteazul Blvd 1, Timisoara 300222, Romania
[5] Victor Babes Univ Med & Pharm Timisoara, Dept Radiol & Med Imaging, Eftimie Murgu Sq 2, Timisoara 300041, Romania
[6] Victor Babes Univ Med & Pharm Timisoara, Res Ctr Pharmaco Toxicol Evaluat, Eftimie Murgu Sq 2, Timisoara 300041, Romania
[7] Victor Babes Univ Med & Pharm Timisoara, Doctoral Sch, Eftimie Murgu Sq 2, Timisoara 300041, Romania
[8] Victor Babes Univ Med & Pharm Timisoara, Dept Anat & Embriol, Timisoara 300041, Romania
[9] Vasile Goldis Western Univ Arad, Med Fac, Discipline Anat & Embriol, Revolut Blvd 94, Arad 310025, Romania
关键词
oculomics; retinal microcirculation; cardiovascular disease; diabetes mellitus; deep learning; artificial intelligence; OCT; OCTA; fundus imaging; INTIMA-MEDIA THICKNESS; CORONARY-HEART-DISEASE; DIABETIC-RETINOPATHY; ATHEROSCLEROSIS RISK; BLOOD-PRESSURE; EYE; VALIDATION; ABNORMALITIES; HYPERTENSION; PHOTOGRAPHS;
D O I
10.3390/biomedicines12092150
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cardiovascular diseases (CVDs) are a major cause of mortality globally, emphasizing the need for early detection and effective risk assessment to improve patient outcomes. Advances in oculomics, which utilize the relationship between retinal microvascular changes and systemic vascular health, offer a promising non-invasive approach to assessing CVD risk. Retinal fundus imaging and optical coherence tomography/angiography (OCT/OCTA) provides critical information for early diagnosis, with retinal vascular parameters such as vessel caliber, tortuosity, and branching patterns identified as key biomarkers. Given the large volume of data generated during routine eye exams, there is a growing need for automated tools to aid in diagnosis and risk prediction. The study demonstrates that AI-driven analysis of retinal images can accurately predict cardiovascular risk factors, cardiovascular events, and metabolic diseases, surpassing traditional diagnostic methods in some cases. These models achieved area under the curve (AUC) values ranging from 0.71 to 0.87, sensitivity between 71% and 89%, and specificity between 40% and 70%, surpassing traditional diagnostic methods in some cases. This approach highlights the potential of retinal imaging as a key component in personalized medicine, enabling more precise risk assessment and earlier intervention. It not only aids in detecting vascular abnormalities that may precede cardiovascular events but also offers a scalable, non-invasive, and cost-effective solution for widespread screening. However, the article also emphasizes the need for further research to standardize imaging protocols and validate the clinical utility of these biomarkers across different populations. By integrating oculomics into routine clinical practice, healthcare providers could significantly enhance early detection and management of systemic diseases, ultimately improving patient outcomes. Fundus image analysis thus represents a valuable tool in the future of precision medicine and cardiovascular health management.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Insights into Systemic Disease through Retinal Imaging-Based Oculomics
    Wagner, Siegfried K.
    Fu, Dun Jack
    Faes, Livia
    Liu, Xiaoxuan
    Huemer, Josef
    Khalid, Hagar
    Ferraz, Daniel
    Korot, Edward
    Kelly, Christopher
    Balaskas, Konstantinos
    Denniston, Alastair K.
    Keane, Pearse A.
    TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2020, 9 (02):
  • [2] Using Artificial Intelligence to Analyse the Retinal Vascular Network: The Future of Cardiovascular Risk Assessment Based on Oculomics? A Narrative Review
    Arnould, Louis
    Meriaudeau, Fabrice
    Guenancia, Charles
    Germanese, Clement
    Delcourt, Cecile
    Kawasaki, Ryo
    Cheung, Carol Y.
    Creuzot-Garcher, Catherine
    Grzybowski, Andrzej
    OPHTHALMOLOGY AND THERAPY, 2023, 12 (02) : 657 - 674
  • [3] Using Artificial Intelligence to Analyse the Retinal Vascular Network: The Future of Cardiovascular Risk Assessment Based on Oculomics? A Narrative Review
    Louis Arnould
    Fabrice Meriaudeau
    Charles Guenancia
    Clément Germanese
    Cécile Delcourt
    Ryo Kawasaki
    Carol Y. Cheung
    Catherine Creuzot-Garcher
    Andrzej Grzybowski
    Ophthalmology and Therapy, 2023, 12 : 657 - 674
  • [4] Artificial intelligence to improve the diagnosis of cardiovascular diseases
    Fernandez-Ruiz, Irene
    NATURE REVIEWS CARDIOLOGY, 2019, 16 (03) : 133 - 133
  • [5] Artificial intelligence to improve the diagnosis of cardiovascular diseases
    Irene Fernández-Ruiz
    Nature Reviews Cardiology, 2019, 16 : 133 - 133
  • [6] Artificial Intelligence (AI) for Early Diagnosis of Retinal Diseases
    Parmar, Uday Pratap Singh
    Surico, Pier Luigi
    Singh, Rohan Bir
    Romano, Francesco
    Salati, Carlo
    Spadea, Leopoldo
    Musa, Mutali
    Gagliano, Caterina
    Mori, Tommaso
    Zeppieri, Marco
    MEDICINA-LITHUANIA, 2024, 60 (04):
  • [7] Current status and prospects of breast cancer imaging-based diagnosis using artificial intelligence
    Sekine, Chikako
    Horiguchi, Jun
    INTERNATIONAL JOURNAL OF CLINICAL ONCOLOGY, 2024, 29 (11) : 1641 - 1647
  • [8] Medical imaging-based artificial intelligence in pneumonia: A review
    Yang, Yanping
    Xing, Wenyu
    Liu, Yiwen
    Ta, Dean
    Hou, Dongni
    Song, Yuanlin
    RESPIROLOGY, 2024, 29 : 222 - 223
  • [9] Insights into Systemic Disease through Retinal Imaging-Based Oculomics (vol 9, pg 6, 2020)
    Wagner, Siegfried K.
    Fu, Dun Jack
    Faes, Livia
    Liu, Xiaoxuan
    Huemer, Josef
    Khalid, Hagar
    Ferraz, Daniel
    Korot, Edward
    Kelly, Christopher
    Balaskas, Konstantinos
    Denniston, Alastair K.
    Keane, Pearse A.
    TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2021, 10 (08):
  • [10] CARDIOVASCULAR DISEASE DIAGNOSIS USING CARDIOVASCULAR IMAGING AND ARTIFICIAL INTELLIGENCE
    Miao, Julia
    Miao, Kathleen H.
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2022, 79 (09) : 1343 - 1343