Fourth-order phase field modeling of dynamic fracture in porous brittle materials using an adaptive isogeometric analysis

被引:0
|
作者
Li, Pengfei [1 ]
Qiu, Wenke [2 ]
Wu, Jianying [3 ]
Wu, Yi [4 ]
Hu, Kun [5 ]
Zhao, Lunyang [3 ]
机构
[1] Jiangsu Open Univ, Sch Civil Engn, Nanjing 210036, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, Wuhan 430074, Peoples R China
[3] South China Univ Technol, State Key Lab Subtrop Bldg & Urban Sci, Guangzhou 510641, Peoples R China
[4] Univ Sci & Technol Beijing, Sch Mech Engn, Beijing 100083, Peoples R China
[5] Huaiyin Inst Technol, Fac Architecture & Civil Engn, Huaian 223003, Peoples R China
基金
中国国家自然科学基金;
关键词
Fourth-order phase field method; Dynamic fracture; Isogeometric analysis; Adaptive refinement; Porous materials; PROPAGATION; FORMULATION; SPLINES; DAMAGE;
D O I
10.1016/j.engfracmech.2024.110763
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The fourth-order phase field modeling of dynamic fracture in porous brittle materials is performed via an adaptive isogeometric analysis. The hybrid phase field model is extended to dynamic fracture and fourth-order theory to capture the dynamic crackings. The proposed fourth-order phase field model can relax the mesh size requirements while accurately regularizing sharp cracks. The developed model is capable of flexibly constructing the C1 continuous basis functions that are required by the fourth-order model. An adaptive refinement scheme based on hierarchical T-meshes is performed to define the complex geometric shapes and automatically refine the meshes in the crack regions to improve the computational efficiency. To prevent possible crack healings, the history field at integration points is transferred from old meshes to new ones. Numerical examples show the accuracy and efficiency of the method to reproduce dynamic crack branching in the benchmark problem, as well as to capture complex dynamic cracking patterns in porous materials. It is also shown that the solutions are convergent with respect to the mesh refinement and the decreasing of time increment.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Adaptive fourth-order phase field analysis for brittle fracture
    Goswami, Somdatta
    Anitescu, Cosmin
    Rabczuk, Timon
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 361
  • [2] Fourth-order phase-field modeling for brittle fracture in piezoelectric materials
    Tan, Yu
    Peng, Fan
    Liu, Chang
    Peng, Daiming
    Li, Xiangyu
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2024, 45 (05) : 837 - 856
  • [3] Fourth-order phase-field modeling for brittle fracture in piezoelectric materials
    Yu TAN
    Fan PENG
    Chang LIU
    Daiming PENG
    Xiangyu LI
    Applied Mathematics and Mechanics(English Edition), 2024, 45 (05) : 837 - 856
  • [4] Adaptive fourth-order phase-field modeling of ductile fracture using an isogeometric-meshfree approach
    Li, Weidong
    Ambati, Marreddy
    Nguyen-Thanh, Nhon
    Du, Hejun
    Zhou, Kun
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 406
  • [5] Adaptive isogeometric analysis for phase-field modeling of anisotropic brittle fracture
    Chen, Lin
    Li, Bin
    de Borst, Rene
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2020, 121 (20) : 4630 - 4648
  • [6] An efficient gradient smoothing meshfree formulation for the fourth-order phase field modeling of brittle fracture
    Wu, Junchao
    Wang, Dongdong
    Lin, Zeng
    Qi, Dongliang
    COMPUTATIONAL PARTICLE MECHANICS, 2020, 7 (02) : 193 - 207
  • [7] An efficient gradient smoothing meshfree formulation for the fourth-order phase field modeling of brittle fracture
    Junchao Wu
    Dongdong Wang
    Zeng Lin
    Dongliang Qi
    Computational Particle Mechanics, 2020, 7 : 193 - 207
  • [8] Higher order phase-field modeling of brittle fracture via isogeometric analysis
    Greco, Luigi
    Patton, Alessia
    Negri, Matteo
    Marengo, Alessandro
    Perego, Umberto
    Reali, Alessandro
    ENGINEERING WITH COMPUTERS, 2024, 40 (06) : 3541 - 3560
  • [9] Adaptive phase-field modeling of dynamic brittle fracture in composite materials
    Li, Weidong
    Nguyen-Thanh, Nhon
    Du, Hejun
    Zhou, Kun
    COMPOSITE STRUCTURES, 2023, 306
  • [10] Adaptive phase-field modeling for brittle fracture in isotropic/orthotropic piezoelectric materials using multi-patch isogeometric analysis
    Li, Haozhi
    Liu, Zhaowei
    Yu, Tiantang
    Chen, Leilei
    COMPOSITE STRUCTURES, 2025, 354