Investigating the effect of active site's coordination number on the oxygen reduction reaction activity of Fe-Co dual-atom catalysts: A theoretical study

被引:0
|
作者
Kumar, Anuj [1 ]
Ubaidullah, Mohd [2 ]
Yasin, Ghulam [3 ]
机构
[1] GLA Univ, Dept Chem, Nanotechnol Res Lab, Mathura 281406, Uttar Pradesh, India
[2] King Saud Univ, Coll Sci, Dept Chem, POB 2455, Riyadh 11451, Saudi Arabia
[3] Lanzhou Univ, Sch Mat & Energy, Lanzhou 730000, Gansu, Peoples R China
关键词
Electrocatalysts; Single-atom; Dual-site catalysts; Oxygen reduction reaction; Theoretical studies; ELECTROCATALYTIC ACTIVITY; ELECTROREDUCTION; CONVERSION; ORIGIN;
D O I
10.1016/j.ijhydene.2025.02.124
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Dual-atom catalysts (DACs) have great potential to revolutionize electrocatalytic oxygen reduction reaction (ORR) by utilizing two adjacent active sites to cleave the O-O bond in O2 molecules, but their full potential is limited by insufficient understanding of the coordination environment and electronic interactions between the active sites. Herein, we conducted a comprehensive density functional theory (DFT) analysis on DACs with two coordination configurations, FeN3CoN3 (3N-coordination) and FeN4CoN4 (4N-coordination), revealing how the coordination number around active sites significantly affects ORR performance. The results indicated that the dissociative O2 adsorption configuration, facilitated by cis-bridged O2 adduct formation on Fe and Co active sites of both DACs, was more thermodynamically and kinetically favourable than the associative mechanism on both DACs. The results of free energy calculations indicated that the Delta G*O2 of FeN3CoN3 is lower than FeN4CoN4, demonstrating that the 3N-coordination environment endowed FeN3CoN3 with a higher adsorption ability as compared to FeN4CoN4 with a 4N-coordination environment. The elimination of *OH from the active site, required 0.28 eV and 0.36 eV as the limiting potentials for the FeN4CoN4 and FeN3CoN3 models, respectively, both of which are considerably lower than the 0.68 V (FeN4CoN4) and 0.86 V (FeN3CoN3) observed in single active sites during associative mechanism. Thus, the cis-bridge O2 configuration across neighbouring sites in the DACs significantly reduces the overpotential, demonstrating FeN4CoN4 as a more effective catalytic model than FeN3CoN3. Further, the findings reveal that the 4N-coordination in FeN4CoN4 enhances orbital coupling and spin polarization, boosting its ORR activity compared to FeN3CoN3. The study emphasizes the importance of coordination number in DAC design, highlighting its role in optimizing electrocatalytic performance.
引用
收藏
页码:694 / 702
页数:9
相关论文
共 43 条
  • [1] Dual-atom Co-Fe catalysts for oxygen reduction reaction
    Tang, Tianmi
    Wang, Yin
    Han, Jingyi
    Zhang, Qiaoqiao
    Bai, Xue
    Niu, Xiaodi
    Wang, Zhenlu
    Guan, Jingqi
    CHINESE JOURNAL OF CATALYSIS, 2023, 46 : 48 - 55
  • [2] Boosting the Electrocatalytic Activity of Fe-Co Dual-Atom Catalysts for Oxygen Reduction Reaction by Ligand-Modification Engineering
    Li, Lei
    Li, Yameng
    Huang, Rao
    Cao, Xinrui
    Wen, Yuhua
    CHEMCATCHEM, 2021, 13 (21) : 4645 - 4651
  • [3] Fe-based dual-atom catalysts for the oxygen reduction reaction
    Zhang, Wuyi
    Yi, Shiyuan
    Yu, Yihong
    Liu, Hui
    Kucernak, Anthony
    Wu, Jun
    Li, Song
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 12 (01) : 87 - 112
  • [4] Sublimation Transformation Synthesis of Dual-Atom Fe Catalysts for Efficient Oxygen Reduction Reaction
    Yan, Li
    Mao, Yu
    Li, Yingxin
    Sha, Qihao
    Sun, Kai
    Li, Panpan
    Waterhouse, Geoffrey I. N.
    Wang, Ziyun
    Tian, Shubo
    Sun, Xiaoming
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2025, 64 (01)
  • [5] Exploring the Active Site and Catalytic Activity of N-Coordinated Ni2 Dual-Atom Catalysts for Oxygen Reduction Reaction
    Singh, Ashok
    Pakhira, Srimanta
    ACS APPLIED ENERGY MATERIALS, 2025, 8 (03): : 1544 - 1560
  • [6] Regulating the Oxygen Affinity of Single Atom Catalysts by Dual-atom Design for Enhanced Oxygen Reduction Reaction Activity
    Zheng Meng
    Wang Jin
    CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2022, 38 (05) : 1275 - 1281
  • [7] Theoretical insights into dual-atom catalysts for the oxygen reduction reaction: the crucial role of orbital polarization
    Zou, Wanjuan
    Lu, Ruihu
    Liu, Xiaolin
    Xiao, Gaofan
    Liao, Xiaobin
    Wang, Zhaoyang
    Zhao, Yan
    JOURNAL OF MATERIALS CHEMISTRY A, 2022,
  • [8] Regulating the Oxygen Affinity of Single Atom Catalysts by Dual-atom Design for Enhanced Oxygen Reduction Reaction Activity
    Meng Zheng
    Jin Wang
    Chemical Research in Chinese Universities, 2022, 38 : 1275 - 1281
  • [9] Boosting the oxygen reduction reaction activity of dual-atom catalysts on N-doped graphene by regulating the N coordination environment
    Li, Lei
    Wu, Xiaoxia
    Du, Qiuying
    Bai, Narsu
    Wen, Yuhua
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 26 (01) : 628 - 634
  • [10] Oxygen reduction reaction activity of Fe-based dual-atom catalysts with different local configurations via graph neural representation
    Xia, Xueqian
    Ma, Zengying
    Huang, Yucheng
    CHINESE JOURNAL OF CHEMICAL PHYSICS, 2024, 37 (05) : 599 - 604