3D printable sustainable hydrogel formulations for tissue engineering applications

被引:1
|
作者
Porwal, Sejal [1 ]
Sridhar, Sathvik Belagodu [2 ]
Talath, Sirajunisa [2 ]
Wali, Adil Farooq [2 ]
Warsi, Musarrat Husain [3 ]
Malviya, Rishabha [1 ]
机构
[1] Galgotias Univ, Sch Med & Allied Sci, Dept Pharm, Plot 17 A,Yamuna Expressway, Greater Noida, Uttar Pradesh, India
[2] RAK Med & Hlth Sci Univ, RAK Coll Pharm, Ras Al Khaymah, U Arab Emirates
[3] Taif Univ, Coll Pharm, Dept Pharmaceut & Ind Pharm, Taif, Saudi Arabia
关键词
3D printing; Hydrogels; Biomaterials; Extrusion; Regenerative medicine; Scafolds; Bioprinting; Bio-inks; HYALURONIC-ACID; BONE; GELATIN; SCAFFOLDS; POLYMERS; DELIVERY; SYSTEMS; TRENDS; REPAIR; ROBUST;
D O I
10.1016/j.jddst.2024.106308
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Tissue engineering (TE) improves tissue repair and regeneration by combining biology, engineering, and materials science. Flexible scaffolds like hydrogels resemble the extracellular matrix and promote cell growth. Recent advances in 3D printing enable for precise production of complex tissue architectures, which might enhance personalized medicine, regenerative therapies, and disease models. The aim of the article is to examine the revolutionary developments in hydrogel-based 3D printing for tissue engineering and their implications for regenerative medicine. This review study examines how hydrogel-based 3D printing has revolutionized tissue engineering by changing complicated tissue structures via printing technology and hydrogel compositions. It highlights significant advancements in scaffolds for different tissues, wound healing, and bioelectronics for smart materials. Despite advancements, the research emphasizes ongoing issues, such as improving hydrogel mechanical properties and overcoming regulatory hurdles, emphasizing the need for constant innovation and refinement in this dynamic business. In conclusion, hydrogel-based 3D printing is at the forefront of tissue engineering, providing new options for building complex, functional tissue structures & individualized medicinal applications, while continuous developments and difficulties continue to determine its future.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] 3D Printable Soy/Silk Hybrid Hydrogels for Tissue Engineering Applications
    Dorishetty, Pramod
    Balu, Rajkamal
    Gelmi, Amy
    Mata, Jitendra P.
    Dutta, Naba K.
    Choudhury, Namita Roy
    BIOMACROMOLECULES, 2021, 22 (09) : 3668 - 3678
  • [2] Development of 3D printable conductive hydrogel with crystallized PEDOT:PSS for neural tissue engineering
    Dong Nyoung Heo
    Lee, Se-Jun
    Timsina, Raju
    Qiu, Xiangyun
    Castro, Nathan J.
    Zhang, Lijie Grace
    MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2019, 99 : 582 - 590
  • [3] 3D printable carboxylated cellulose nanocrystal-reinforced hydrogel inks for tissue engineering
    Kumar, Anuj
    Matari, Ibrahim Abdullah I.
    Han, Sung Soo
    BIOFABRICATION, 2020, 12 (02)
  • [4] A Review on 3D Printable Techniques for Tissue Engineering
    Gupta S.
    Bissoyi A.
    Bit A.
    BioNanoScience, 2018, 8 (3) : 868 - 883
  • [5] Printable gelatin, alginate and boron nitride nanotubes hydrogel-based ink for 3D bioprinting and tissue engineering applications
    Kakarla, Akesh B.
    Kong, Ing
    Turek, Ilona
    Kong, Cin
    Irving, Helen
    MATERIALS & DESIGN, 2022, 213
  • [6] Biodegradable and 3D printable lysine functionalized polycaprolactone scaffolds for tissue engineering applications
    Naik, Sonali S.
    Torris, Arun
    Choudhury, Namita R.
    Dutta, Naba K.
    Nair, Kiran Sukumaran
    BIOMATERIALS ADVANCES, 2024, 159
  • [7] 3D printable gelatin/nisin biomaterial inks for antimicrobial tissue engineering applications
    Ortega, Mateo Dallos
    Aveyard, Jenny
    Ciupa, Alexander
    Poole, Robert J.
    Whetnall, David
    Behnsen, Julia G.
    D'Sa, Raechelle A.
    MATERIALS ADVANCES, 2024, 5 (19): : 7729 - 7746
  • [8] Hydrogel microfibers for 3D tissue engineering
    Onoe, Hiroaki
    2017 IEEE 12TH INTERNATIONAL CONFERENCE ON NANO/MICRO ENGINEERED AND MOLECULAR SYSTEMS (NEMS), 2017,
  • [9] A 3D printable gelatin methacryloyl/chitosan hydrogel assembled with conductive PEDOT for neural tissue engineering
    Han, Ying
    Sun, Mouyuan
    Lu, Xingchen
    Xu, Kailei
    Yu, Mengfei
    Yang, Huayong
    Yin, Jun
    COMPOSITES PART B-ENGINEERING, 2024, 273
  • [10] Recent advances in 3D printable conductive hydrogel inks for neural engineering
    Sung Dong Kim
    Kyoungryong Kim
    Mikyung Shin
    Nano Convergence, 10