A remark on the obstacle problem with lower regularity

被引:0
|
作者
Karakhanyan, Aram [1 ]
机构
[1] Univ Edinburgh, Sch Math, Edinburgh, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Free boundary regularity; obstacle problem;
D O I
10.1080/17476933.2024.2410956
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a monotone quantity for the classical obstacle problem with non-smooth obstacle and show that the blow-ups are homogeneous functions of degree alpha < 2.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] On the regularity of an obstacle control problem
    Lou, HW
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 258 (01) : 32 - 51
  • [2] The regularity theory for the double obstacle problem
    Ki-Ahm Lee
    Jinwan Park
    Henrik Shahgholian
    Calculus of Variations and Partial Differential Equations, 2019, 58
  • [3] The regularity theory for the double obstacle problem
    Lee, Ki-Ahm
    Park, Jinwan
    Shahgholian, Henrik
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (03)
  • [4] Boundary regularity for a parabolic obstacle type problem
    Andersson, J.
    INTERFACES AND FREE BOUNDARIES, 2010, 12 (03) : 279 - 291
  • [5] Generic regularity of free boundaries for the obstacle problem
    Figalli, Alessio
    Ros-Oton, Xavier
    Serra, Joaquim
    PUBLICATIONS MATHEMATIQUES DE L IHES, 2020, 132 (01): : 181 - 292
  • [6] Regularity of the free boundary in the biharmonic obstacle problem
    Aleksanyan, Gohar
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (06)
  • [7] The regularity theory for the parabolic double obstacle problem
    Ki-Ahm Lee
    Jinwan Park
    Mathematische Annalen, 2021, 381 : 685 - 728
  • [8] Generic regularity of free boundaries for the obstacle problem
    Alessio Figalli
    Xavier Ros-Oton
    Joaquim Serra
    Publications mathématiques de l'IHÉS, 2020, 132 : 181 - 292
  • [9] Regularity results for a penalized boundary obstacle problem
    Danielli, Donatella
    Jain, Rohit
    MATHEMATICS IN ENGINEERING, 2021, 3 (01): : 1 - 23
  • [10] Regularity of the free boundary in the biharmonic obstacle problem
    Gohar Aleksanyan
    Calculus of Variations and Partial Differential Equations, 2019, 58