Multiscale Mathematical Modeling in Systems Biology: A Framework to Boost Plant Synthetic Biology

被引:0
|
作者
Lucido, Abel [1 ,2 ,3 ]
Basallo, Oriol [1 ,2 ,3 ]
Marin-Sanguino, Alberto [1 ,2 ,3 ]
Eleiwa, Abderrahmane [1 ,2 ,3 ]
Martinez, Emilce Soledad [1 ,2 ,4 ]
Vilaprinyo, Ester [1 ,2 ,3 ]
Sorribas, Albert [1 ,2 ,3 ]
Alves, Rui [1 ,2 ,3 ]
机构
[1] Univ Lleida, Fac Med, Dept Ciencies Med Bas, Syst Biol Grp, Lleida 25008, Spain
[2] Inst Recerca Biomed IRBLleida, Lleida 25198, Spain
[3] MathSys2Bio, Grp Recerca Consolidat Generalitat Catalunya, Lleida 25001, Spain
[4] Natl Inst Agr Technol INTA, RA-2700 Pergamino, Argentina
来源
PLANTS-BASEL | 2025年 / 14卷 / 03期
关键词
plant science; multiscale; synthetic biology; mathematical model; CRASSULACEAN ACID METABOLISM; SHOOT-ROOT ALLOCATION; NUTRIENT-UPTAKE; NETWORK RECONSTRUCTION; SIMULATION-MODEL; GENERIC MODEL; GROWTH-MODEL; GENOME; NITROGEN; CARBON;
D O I
10.3390/plants14030470
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Global food insecurity and environmental degradation highlight the urgent need for more sustainable agricultural solutions. Plant synthetic biology emerges as a promising yet risky avenue to develop such solutions. While synthetic biology offers the potential for enhanced crop traits, it also entails risks of extensive environmental damage. This review highlights the complexities and risks associated with plant synthetic biology, while presenting the potential of multiscale mathematical modeling to assess and mitigate those risks effectively. Despite its potential, applying multiscale mathematical models in plants remains underutilized. Here, we advocate for integrating technological advancements in agricultural data analysis to develop a comprehensive understanding of crops across biological scales. By reviewing common modeling approaches and methodologies applicable to plants, the paper establishes a foundation for creating and utilizing integrated multiscale mathematical models. Through modeling techniques such as parameter estimation, bifurcation analysis, and sensitivity analysis, researchers can identify mutational targets and anticipate pleiotropic effects, thereby enhancing the safety of genetically engineered species. To demonstrate the potential of this approach, ongoing efforts are highlighted to develop an integrated multiscale mathematical model for maize (Zea mays L.), engineered through synthetic biology to enhance resilience against Striga (Striga spp.) and drought.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Mathematical Modeling in Systems Biology
    Kraikivski, Pavel
    ENTROPY, 2023, 25 (10)
  • [2] Mathematical Modeling in Systems Biology
    Yli-Harja, Olli
    Emmert-Streib, Frank
    Yli-Hietanen, Jari
    ADVANCES IN ARTIFICIAL LIFE, EVOLUTIONARY COMPUTATION, AND SYSTEMS CHEMISTRY, WIVACE 2016, 2017, 708 : 161 - 166
  • [3] Cultivating plant synthetic biology from systems biology
    Bowen, Tessa A.
    Zdunek, Jeffrey K.
    Medford, June I.
    NEW PHYTOLOGIST, 2008, 179 (03) : 583 - 587
  • [4] Multiscale modeling of cellular systems in biology
    Dallon, John C.
    CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2010, 15 (1-2) : 24 - 31
  • [5] Multiscale modeling in the framework of biological systems and its potential for spaceflight biology studies
    Millar-Wilson, Andrew
    Ward, Orla
    Duffy, Eolann
    Hardiman, Gary
    ISCIENCE, 2022, 25 (11)
  • [6] Multiscale Models for Synthetic Biology
    Kaznessis, Yiannis N.
    2009 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-20, 2009, : 6408 - 6411
  • [7] Engineering plant metabolism into microbes: from systems biology to synthetic biology
    Xu, Peng
    Bhan, Namita
    Koffas, Mattheos A. G.
    CURRENT OPINION IN BIOTECHNOLOGY, 2013, 24 (02) : 291 - 299
  • [8] Editorial overview: Plant synthetic and systems biology
    Kopka, Joachim
    Fernie, Alisdair R.
    CURRENT OPINION IN BIOTECHNOLOGY, 2018, 49 : VIII - XI
  • [9] Mathematical modeling: Epidemiology meets systems biology
    Ulrich, Cornelia M.
    Nijhout, H. Frederik
    Reed, Michael C.
    CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION, 2006, 15 (05) : 827 - 829
  • [10] Mathematical and statistical modeling in cancer systems biology
    Blair, Rachael Hageman
    Trichler, David L.
    Gaille, Daniel P.
    FRONTIERS IN PHYSIOLOGY, 2012, 3