In this paper, we continue to investigate finite-dimensional Nichols algebras of simple Yetter-Drinfeld modules over the Suzuki algebras ANn mu lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{Nn}<^>{\mu\lambda}$$\end{document}. It is finished for the case AN2n mu lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{N\,2n}<^>{\mu\lambda}$$\end{document}. As for the case AN2n+1 mu lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{N\,2n+1}<^>{\mu\lambda}$$\end{document}, it boils down to the long-standing open problem: calculate dimensions of Nichols algebras of dihedral rack type D2n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{D}_{2n+1}$$\end{document}. It is interesting to see that the Suzuki algebras are set-theoretical. We pose some question or problems for our future research. In particular, we are curious about how to generalize the correspondence between braidings of rack type and group algebras to braidings of set-theoretical type.
机构:
Jiangxi Normal Univ, Jiangxi Prov Ctr Appl Math, Nanchang 330022, Jiangxi, Peoples R China
Jiangxi Normal Univ, Sch Math & Stat, Nanchang 330022, Jiangxi, Peoples R ChinaJiangxi Normal Univ, Jiangxi Prov Ctr Appl Math, Nanchang 330022, Jiangxi, Peoples R China
机构:
Zhejiang Normal Univ, Coll Math Phys & Informat Engn, Jinhua 321004, Peoples R ChinaZhejiang Normal Univ, Coll Math Phys & Informat Engn, Jinhua 321004, Peoples R China
Liu, Ling
Shen, Bingliang
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Univ Finance & Econ, Zhejiang Coll, Jinhua 321013, Peoples R ChinaZhejiang Normal Univ, Coll Math Phys & Informat Engn, Jinhua 321004, Peoples R China