A deep learning framework deploying segment anything to detect pan-cancer mitotic figures from haematoxylin and eosin-stained slides

被引:0
|
作者
Shen, Zhuoyan [1 ]
Simard, Mikael [1 ]
Brand, Douglas [1 ,2 ]
Andrei, Vanghelita [3 ,4 ]
Al-Khader, Ali [3 ,4 ]
Oumlil, Fatine [4 ]
Trevers, Katherine [3 ,4 ]
Butters, Thomas [3 ]
Haefliger, Simon [3 ,5 ]
Kara, Eleanna [6 ]
Amary, Fernanda [3 ,4 ]
Tirabosco, Roberto [3 ,4 ]
Cool, Paul [7 ,8 ]
Royle, Gary [1 ]
Hawkins, Maria A. [1 ,2 ]
Flanagan, Adrienne M. [3 ,4 ]
Collins-Fekete, Charles-Antoine [1 ]
机构
[1] UCL, Dept Med Phys & Biomed Engn, London, England
[2] Univ Coll London Hosp NHS Fdn Trust, Dept Radiotherapy, London, England
[3] UCL, Canc Inst, Res Dept Pathol, London, England
[4] Royal Natl Orthopaed Hosp NHS Fdn Trust, Cellular & Mol Pathol, Stanmore, Middx, England
[5] Univ Basel, Univ Hosp Basel, Inst Med Genet & Pathol, Basel, Switzerland
[6] Rutgers State Univ, Rutgers Biomed & Hlth Sci, Dept Neurol, New Brunswick, NJ USA
[7] ROBERT JONES & AGNES HUNT ORTHOPAED HOSP, Dept Orthopaed, OSWESTRY, England
[8] Keele Univ, Sch Med, Newcastle, England
基金
英国工程与自然科学研究理事会;
关键词
MITOSIS; REPRODUCIBILITY; PHH3;
D O I
10.1038/s42003-024-07398-6
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Mitotic activity is an important feature for grading several cancer types. However, counting mitotic figures (cells in division) is a time-consuming and laborious task prone to inter-observer variation. Inaccurate recognition of MFs can lead to incorrect grading and hence potential suboptimal treatment. This study presents an artificial intelligence-based approach to detect mitotic figures in digitised whole-slide images stained with haematoxylin and eosin. Advances in this area are hampered by the small size and variety of datasets available. To address this, we create the largest dataset of mitotic figures (N = 74,620), combining an in-house dataset of soft tissue tumours with five open-source datasets. We then employ a two-stage framework, named the Optimised Mitoses Generator Network (OMG-Net), to identify mitotic figures. This framework first deploys the Segment Anything Model to automatically outline cells, followed by an adapted ResNet18 that distinguishes mitotic figures. OMG-Net achieves an F1 score of 0.84 in detecting pan-cancer mitotic figures, including human breast carcinoma, neuroendocrine tumours, and melanoma. It outperforms previous state-of-the-art models in hold-out test sets. To summarise, our study introduces a generalisable data creation and curation pipeline and a high-performance detection model, which can largely contribute to the field of computer-aided mitotic figure detection.
引用
收藏
页数:11
相关论文
共 10 条
  • [1] Weakly supervised deep learning image analysis can differentiate melanoma from naevi on haematoxylin and eosin-stained histopathology slides
    Maher, Nigel G.
    Danaei Mehr, Homay
    Cong, Cong
    Adegoke, Nurudeen A.
    Vergara, Ismael A.
    Liu, Sidong
    Scolyer, Richard A.
    JOURNAL OF THE EUROPEAN ACADEMY OF DERMATOLOGY AND VENEREOLOGY, 2024, 38 (12) : 2250 - 2258
  • [2] Clinical utility of receptor status prediction in breast cancer and misdiagnosis identification using deep learning on hematoxylin and eosin-stained slides
    Shamai, Gil
    Schley, Ran
    Cretu, Alexandra
    Neoran, Tal
    Sabo, Edmond
    Binenbaum, Yoav
    Cohen, Shachar
    Goldman, Tal
    Polonia, Antonio
    Drumea, Keren
    Stoliar, Karin
    Kimmel, Ron
    COMMUNICATIONS MEDICINE, 2024, 4 (01):
  • [3] Direct identification of ALK and ROS1 fusions in non-small cell lung cancer from hematoxylin and eosin-stained slides using deep learning algorithms
    Mayer, Chen
    Ofek, Efrat
    Fridrich, Danielle Even
    Molchanov, Yossef
    Yacobi, Rinat
    Gazy, Inbal
    Hayun, Ido
    Zalach, Jonathan
    Paz-Yaacov, Nurit
    Barshack, Iris
    MODERN PATHOLOGY, 2022, 35 (12) : 1882 - 1887
  • [4] Deep learning-based quantitative assessment of tumor-infiltrating lymphocytes from hematoxylin and eosin-stained slides in triple-negative breast cancer: A prognostic study
    Kobayashi, Takuma
    Hatanaka, Kanako C.
    Tomioka, Nobumoto
    Konishi, Teppei
    Grynkiewicz, Mateusz
    Komura, Daisuke
    Ishikawa, Shumpei
    Watanabe, Kenichi
    Takahashi, Masato
    Hatanaka, Yutaka
    JOURNAL OF CLINICAL ONCOLOGY, 2024, 42 (16)
  • [5] Interpretable deep learning model to predict the molecular classification of endometrial cancer from haematoxylin and eosin-stained whole-slide images: a combined analysis of the PORTEC randomised trials and clinical cohorts
    Fremond, Sarah
    Andani, Sonali
    Wolf, Jurriaan Barkey
    Dijkstra, Jouke
    Melsbach, Sinead
    Jobsen, Jan J.
    Brinkhuis, Mariel
    Roothaan, Suzan
    Jurgenliemk-Schulz, Ina
    Lutgens, Ludy C. H. W.
    Nout, Remi A.
    van der Steen-Banasik, Elzbieta M.
    de Boer, Stephanie M.
    Powell, Melanie E.
    Singh, Naveena
    Mileshkin, Linda R.
    Mackay, Helen J.
    Leary, Alexandra
    Nijman, Hans W.
    Smit, Vincent T. H. B. M.
    Creutzberg, Carien L.
    Horeweg, Nanda
    Koelzer, Viktor H.
    Bosse, Tjalling
    LANCET DIGITAL HEALTH, 2023, 5 (02): : e71 - e82
  • [6] An interpretable deep learning model for detecting BRCA pathogenic variants of breast cancer from hematoxylin and eosin-stained pathological images
    Li, Yi
    Xiong, Xiaomin
    Liu, Xiaohua
    Wu, Yihan
    Li, Xiaoju
    Liu, Bo
    Lin, Bo
    Li, Yu
    Xu, Bo
    PEERJ, 2024, 12
  • [7] Deep Learning-Based Stratification of Gastric Cancer Patients from Hematoxylin and Eosin-Stained Whole Slide Images by Predicting Molecular Features for Immunotherapy Response
    Wei, Zheng
    Zhao, Xu
    Chen, Jing
    Sun, Qiuyan
    Wang, Zeyang
    Wang, Yanli
    Ye, Zhiyi
    Yuan, Yuan
    Sun, Liping
    Jing, Jingjing
    AMERICAN JOURNAL OF PATHOLOGY, 2023, 193 (10): : 1517 - 1527
  • [8] Comparison of deep learning approaches applied to hematoxylin and eosin-stained whole slide images from women with benign breast disease to predict risk of developing invasive breast cancer
    Saha, Monjoy
    Abubakar, Mustapha
    Rohan, Thomas E.
    Pfeiffer, Ruth M.
    Duggan, Maire A.
    Richert-Boe, Kathryn
    Figueroa, Jonine D.
    Almeida, Jonas S.
    Gierach, Gretchen L.
    CANCER RESEARCH, 2023, 83 (07)
  • [9] Prediction of Epidermal Growth Factor Receptor Mutation Subtypes in Non- Small Cell Lung Cancer From Hematoxylin and Eosin- Stained Slides Using Deep Learning
    Zhang, Wanqiu
    Wang, Wei
    Xu, Yao
    Wu, Kun
    Shi, Jun
    Li, Ming
    Feng, Zhengzhong
    Liu, Yinhua
    Zheng, Yushan
    Wu, Haibo
    LABORATORY INVESTIGATION, 2024, 104 (08)
  • [10] A SCALABLE DEEP LEARNING FRAMEWORK FOR RAPID AUTOMATED ANNOTATION OF HISTOLOGIC AND MORPHOLOGIC FEATURES FROM LARGE UNLABELED PAN-CANCER H&E DATASETS
    Soong, David
    Soong, David
    Soong, David
    Muthuswamy, Anantharaman
    Drew, Clifton
    Pencheva, Nora
    Jure-Kunkel, Maria
    Sasser, Kate
    Hamadeh, Hisham
    Couto, Suzana
    Higgs, Brandon
    JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2021, 9 : A874 - A874