Fisher information and Shannon entropy under the cotangent hyperbolic potential model

被引:0
|
作者
Deji-Jinadu, B. B. [1 ]
Onate, C. A. [1 ]
Ajani, O. O. [1 ]
机构
[1] Bowen Univ, Dept Phys, Iwo, Osun State, Nigeria
关键词
Bound state; eigensolution; quantum information; fisher information; shannon entropy; BOUND-STATE SOLUTIONS; THERMODYNAMIC PROPERTIES; THEORETIC MEASURES; PREDICTION; POSITION;
D O I
10.1142/S0217732324502316
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A Schr & ouml;dinger equation is solved for a cotangent hyperbolic potential using the elegant parametric Nikiforov-Uvarov method. The results obtained are used to calculate the Fisher information for position space and momentum space as well as the Shannon entropy for position space and momentum space at the ground state. The energies of the cotangent potential are observed to be fully bounded for different quantum states. The Fisher information satisfied the Fisher relation known as Cramer-Rao inequality for the Fisher product. Its result also obeyed the Heisenberg principle as its alternative for uncertainty measurement. However, the Shannon entropy only satisfied the Bialynick-Birula, Mycielski inequality for higher values of the screening parameter. Its relation to the Heisenberg principle failed as both the position space and the momentum space are parallel with high entropy squeezing. This potential has not been reported for any system to the best of our understanding.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Eigen solutions, Shannon entropy and fisher information under the Eckart Manning Rosen potential model
    C. A. Onate
    M. C. Onyeaju
    A. N. Ikot
    J. O. A. Idiodi
    J. O. Ojonubah
    Journal of the Korean Physical Society, 2017, 70 : 339 - 347
  • [2] Eigen solutions, Shannon entropy and fisher information under the Eckart Manning Rosen potential model
    Onate, C. A.
    Onyeaju, M. C.
    Ikot, A. N.
    Idiodi, J. O. A.
    Ojonubah, J. O.
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2017, 70 (04) : 339 - 347
  • [3] Shannon entropy and Fisher information for screened Kratzer potential
    Amadi, Precious O.
    Ikot, Akpan N.
    Ngiangia, Alalibo T.
    Okorie, Uduakobong S.
    Rampho, Gaotsiwe J.
    Abdullah, Hewa Y.
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2020, 120 (14)
  • [4] Shannon information entropy for a hyperbolic double-well potential
    Sun, Guo-Hua
    Dong, Shi-Hai
    Launey, Kristina D.
    Dytrych, Tomas
    Draayer, Jerry P.
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2015, 115 (14) : 891 - 899
  • [5] On Shannon-Jaynes entropy and fisher information
    Dimitrov, Vesselin I.
    BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2007, 954 : 143 - 152
  • [6] Shannon entropy and Fisher information-theoretic measures for Mobius square potential
    A. N. Ikot
    G. J. Rampho
    P. O. Amadi
    M. J. Sithole
    U. S. Okorie
    M. I. Lekala
    The European Physical Journal Plus, 135
  • [7] Shannon entropy and Fisher information-theoretic measures for Mobius square potential
    Ikot, A. N.
    Rampho, G. J.
    Amadi, P. O.
    Sithole, M. J.
    Okorie, U. S.
    Lekala, M. I.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (06):
  • [8] On the performance of Fisher Information Measure and Shannon entropy estimators
    Telesca, Luciano
    Lovallo, Michele
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2017, 484 : 569 - 576
  • [9] On the relationship between one-electron potential and densities of Fisher information and Shannon entropy
    Alipour, Mojtaba
    Mohajeri, Afshan
    CHEMICAL PHYSICS, 2012, 392 (01) : 105 - 106
  • [10] Onicescu information energy in terms of Shannon entropy and Fisher information densities
    Alipour, Mojtaba
    Mohajeri, Afshan
    MOLECULAR PHYSICS, 2012, 110 (07) : 403 - 405