CRISPR-based gene editing in plants: Focus on reagents and their delivery tools

被引:0
|
作者
Ebrahimi, Vida [1 ]
Hashemi, Atieh [1 ]
机构
[1] Shahid Beheshti Univ Med Sci, Sch Pharm, Dept Pharmaceut Biotechnol, Tehran, Iran
关键词
CRISPR-Cas9; system; Nanoparticle vectors; Agrobacterium-mediated transformation; Ribonucleoprotein complexes; Viral vectors; Electroporation; NICOTIANA-BENTHAMIANA; GUIDE RNA; GENOME; EFFICIENCY; SYSTEM; MAIZE; TRANSCRIPTION; ARABIDOPSIS; MUTAGENESIS; EXPRESSION;
D O I
10.34172/bi.30019
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Introduction: CRISPR-Cas9 technology has revolutionized plant genome editing, providing precise and efficient methods for genetic modification. This study focuses on the advancements and delivery of CRISPR-Cas9 in plant gene editing. Methods: A comprehensive search in scientific databases, including PubMed, ScienceDirect, and Google Scholar, was conducted to gather information on CRISPR-Cas9 gene editing and its delivery in precise gene modification in plants. Results: The evolving landscape of CRISPR nucleases has led to the development of innovative technologies, enhancing plant research. However, successful editing is contingent on efficient delivery of genome engineering reagents. CRISPR-based gene editing in plants utilizes diverse delivery methods: Agrobacterium-mediated -mediated transformation for bacterial transfer, biolistic transformation for physical gene insertion, electroporation for direct gene entry, expression of developmental regulators for gene expression modulation, and tobacco rattle virus as a viral vector, each offering distinct advantages for precise and efficient genetic modification in plants. Conclusion: CRISPR-Cas9 gene editing stands as a pivotal advancement in plant genetics, offering precise gene manipulation with applications in agriculture and biotechnology. The continuous refinement of reagent delivery tools reinforces CRISPR-Cas9's transformative role in plant genome editing, with significant implications for broader scientific applications.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Advances in Delivery Mechanisms of CRISPR Gene-Editing Reagents in Plants
    Laforest, Larissa C.
    Nadakuduti, Satya Swathi
    FRONTIERS IN GENOME EDITING, 2022, 4
  • [2] Computational tools and scientometrics for CRISPR-based genome editing
    M. Balakrishnan
    Anuradha Kotla
    Surekha Agarwal
    P. Krishnan
    P. Supriya
    Ch. Srinivasa Rao
    Journal of Plant Biochemistry and Biotechnology, 2023, 32 : 808 - 817
  • [3] Computational tools and scientometrics for CRISPR-based genome editing
    Balakrishnan, M.
    Kotla, Anuradha
    Agarwal, Surekha
    Krishnan, P.
    Supriya, P.
    Srinivasa Rao, Ch.
    JOURNAL OF PLANT BIOCHEMISTRY AND BIOTECHNOLOGY, 2023, 32 (4) : 808 - 817
  • [4] A critical look on CRISPR-based genome editing in plants
    Ahmad, Niaz
    Rahman, Mehboob-ur
    Mukhtar, Zahid
    Zafar, Yusuf
    Zhang, Baohong
    JOURNAL OF CELLULAR PHYSIOLOGY, 2020, 235 (02) : 666 - 682
  • [5] Engineering the Delivery System for CRISPR-Based Genome Editing
    Glass, Zachary
    Lee, Matthew
    Li, Yamin
    Xu, Qiaobing
    TRENDS IN BIOTECHNOLOGY, 2018, 36 (02) : 173 - 185
  • [6] CRISPR-Based Genome Editing and Its Applications in Woody Plants
    Min, Tian
    Hwarari, Delight
    Li, Dong'ao
    Movahedi, Ali
    Yang, Liming
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (17)
  • [7] Nature Inspired Delivery Vehicles for CRISPR-Based Genome Editing
    Clarissa, Elizabeth Maria
    Karmacharya, Mamata
    Choi, Hyunmin
    Kumar, Sumit
    Cho, Yoon-Kyoung
    SMALL, 2025,
  • [8] CRISPR-Based Gene Drive Introduced to Plants
    Genetic Engineering and Biotechnology News, 2021, 41 (08):
  • [9] A Review on Advanced CRISPR-Based Genome-Editing Tools: Base Editing and Prime Editing
    Ali Saber Sichani
    Maryam Ranjbar
    Maryam Baneshi
    Farid Torabi Zadeh
    Jafar Fallahi
    Molecular Biotechnology, 2023, 65 : 849 - 860
  • [10] A Review on Advanced CRISPR-Based Genome-Editing Tools: Base Editing and Prime Editing
    Sichani, Ali Saber
    Ranjbar, Maryam
    Baneshi, Maryam
    Zadeh, Farid Torabi
    Fallahi, Jafar
    MOLECULAR BIOTECHNOLOGY, 2023, 65 (06) : 849 - 860