Robust, fast and accurate mapping of diffusional mean kurtosis

被引:0
|
作者
Farquhar, Megan E. [1 ]
Yang, Qianqian [1 ,2 ,3 ]
Vegh, Viktor [4 ,5 ]
机构
[1] Queensland Univ Technol, Fac Sci, Sch Math Sci, Brisbane, Australia
[2] Queensland Univ Technol, Ctr Data Sci, Brisbane, Australia
[3] Queensland Univ Technol, Ctr Biomed Technol, Brisbane, Australia
[4] Univ Queensland, Ctr Adv Imaging, Brisbane, Australia
[5] ARC Training Ctr Innovat Biomed Imaging Technol, Brisbane, Australia
来源
ELIFE | 2024年 / 12卷
基金
澳大利亚研究理事会;
关键词
mean diffusional kurtosis; sub-diffusion model; non-Gaussian diffusion; diffusion MRI; multiple diffusion times; high b-values; MAGNETIC-RESONANCE; TENSOR; MODELS; MRI; VOLUME; BRAIN;
D O I
10.7554/eLife.90465
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Diffusional kurtosis imaging (DKI) is a methodology for measuring the extent of non-Gaussian diffusion in biological tissue, which has shown great promise in clinical diagnosis, treatment planning, and monitoring of many neurological diseases and disorders. However, robust, fast, and accurate estimation of kurtosis from clinically feasible data acquisitions remains a challenge. In this study, we first outline a new accurate approach of estimating mean kurtosis via the sub-diffusion mathematical framework. Crucially, this extension of the conventional DKI overcomes the limitation on the maximum b-value of the latter. Kurtosis and diffusivity can now be simply computed as functions of the sub-diffusion model parameters. Second, we propose a new fast and robust fitting procedure to estimate the sub-diffusion model parameters using two diffusion times without increasing acquisition time as for the conventional DKI. Third, our sub-diffusion-based kurtosis mapping method is evaluated using both simulations and the Connectome 1.0 human brain data. Exquisite tissue contrast is achieved even when the diffusion encoded data is collected in only minutes. In summary, our findings suggest robust, fast, and accurate estimation of mean kurtosis can be realised within a clinically feasible diffusion-weighted magnetic resonance imaging data acquisition time.
引用
收藏
页数:29
相关论文
共 50 条
  • [1] Mean Diffusional Kurtosis in Patients with Glioma: Initial Results with a Fast Imaging Method in a Clinical Setting
    Tietze, A.
    Hansen, M. B.
    Ostergaard, L.
    Jespersen, S. N.
    Sangill, R.
    Lund, T. E.
    Geneser, M.
    Hjelm, M.
    Hansen, B.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2015, 36 (08) : 1472 - 1478
  • [2] Heterogeneity of multiple sclerosis lesions in fast diffusional kurtosis imaging
    Thaler, Christian
    Kyselyova, Anna A.
    Faizy, Tobias D.
    Nawka, Marie T.
    Jespersen, Sune
    Hansen, Brian
    Stellmann, Jan-Patrick
    Heesen, Christoph
    Stuerner, Klarissa H.
    Stark, Maria
    Fiehler, Jens
    Bester, Maxim
    Gellissen, Susanne
    PLOS ONE, 2021, 16 (02):
  • [3] Fast and Robust Estimation of Diffusional Kurtosis Imaging (DKI) Parameters by General Closed-form Expressions and their Extensions
    Masutani, Yoshitaka
    Aoki, Shigeki
    MAGNETIC RESONANCE IN MEDICAL SCIENCES, 2014, 13 (02) : 97 - 115
  • [4] Spatiotemporal dynamics of diffusional kurtosis, mean diffusivity and perfusion changes in experimental stroke
    Hui, Edward S.
    Du, Fang
    Huang, Shiliang
    Shen, Qiang
    Duong, Timothy Q.
    BRAIN RESEARCH, 2012, 1451 : 100 - 109
  • [5] Diffusional kurtosis imaging in hydrocephalus
    Serulle, Yafell
    Pawar, Rahul V.
    Eubig, Jan
    Fieremans, Els
    Kong, Steven E.
    George, Ilena C.
    Morley, Christopher
    Babb, James S.
    George, Ajax E.
    MAGNETIC RESONANCE IMAGING, 2015, 33 (05) : 531 - 536
  • [6] Fast imaging of mean, axial and radial diffusion kurtosis
    Hansen, Brian
    Shemesh, Noam
    Jespersen, Sune Norhoj
    NEUROIMAGE, 2016, 142 : 371 - 383
  • [7] Fast and Robust Diffusion Kurtosis Parametric Mapping Using a Three-Dimensional Convolutional Neural Network
    Li, Zhiwei
    Gong, Ting
    Lin, Zhichao
    He, Hongjian
    Tong, Qiqi
    Li, Chen
    Sun, Yi
    Yu, Feng
    Zhong, Jianhui
    IEEE ACCESS, 2019, 7 : 71398 - 71411
  • [8] A robust implementation of a kurtosis beamformer for the accurate identification of epileptogenic foci
    Prendergast, Garreth
    Green, Gary G. R.
    Hymers, Mark
    CLINICAL NEUROPHYSIOLOGY, 2013, 124 (04) : 658 - 666
  • [9] Diffusional Kurtosis Imaging of the Developing Brain
    Paydar, A.
    Fieremans, E.
    Nwankwo, J. I.
    Lazar, M.
    Sheth, H. D.
    Adisetiyo, V.
    Helpern, J. A.
    Jensen, J. H.
    Milla, S. S.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2014, 35 (04) : 808 - 814
  • [10] Quantitative assessment of diffusional kurtosis anisotropy
    Glenn, G. Russell
    Helpern, Joseph A.
    Tabesh, Ali
    Jensen, Jens H.
    NMR IN BIOMEDICINE, 2015, 28 (04) : 448 - 459