PREDICTION OF PCFDNA LEVELS, PROGRESSION-FREE SURVIVAL, AND OVERALL SURVIVAL THROUGH MACHINE-LEARNING MODELS BASED ON MRI-DERIVED RADIOMIC FEATURES IN PATIENTS WITH NEWLY DIAGNOSED GLIOBLASTOMA

被引:0
|
作者
Nocera, G. [1 ,2 ,3 ,4 ]
Pecco, N. [1 ,2 ,3 ]
Pieri, V [1 ,5 ]
Palazzo, L. [1 ,5 ]
D'Oria, F. [1 ]
Della Rosa, P. [2 ,3 ]
Bailo, M. [4 ]
Finocchiaro, G. [5 ]
Mortini, P. [1 ,4 ]
Falini, A. [1 ,2 ,3 ]
Filippi, M. [1 ,5 ]
Berzero, G. [1 ,5 ]
Castellano, A. [1 ,2 ,3 ]
机构
[1] Univ Vita Salute San Raffaele, Milan, Italy
[2] IRCCS San Raffaele Hosp, Dept Neuroradiol, Milan, Italy
[3] IRCCS San Raffaele Hosp, CERMAC, Milan, Italy
[4] IRCCS San Raffaele Hosp, Dept Neurosurg & Gamma Knife Radiosurg, Milan, Italy
[5] IRCCS San Raffaele Hosp, Dept Neurol, Milan, Italy
关键词
D O I
10.1093/neuonc/noae144.200
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
引用
收藏
页码:V61 / V61
页数:1
相关论文
共 50 条
  • [2] Machine Learning-Based Radiomic Features for Glioblastoma Overall Survival Prediction
    Das, Ankit
    Cheng, Kee Yen
    Liu, Yong
    Goh, Rick Siow Mong
    Yang, Feng
    2024 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI 2024, 2024, : 894 - 898
  • [3] Overall Survival Prediction in Glioblastoma With Radiomic Features Using Machine Learning
    Baid, Ujjwal
    Rane, Swapnil U.
    Talbar, Sanjay
    Gupta, Sudeep
    Thakur, Meenakshi H.
    Moiyadi, Aliasgar
    Mahajan, Abhishek
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2020, 14
  • [4] Diffusion MRI Characteristics After Concurrent Radiochemotherapy Predicts Progression-Free and Overall Survival in Newly Diagnosed Glioblastoma
    Chang, Warren
    Pope, Whitney B.
    Harris, Robert J.
    Hardy, Anthony J.
    Leu, Kevin
    Mody, Reema R.
    Nghiemphu, Phioanh L.
    Lai, Albert
    Cloughesy, Timothy F.
    Ellingson, Benjamin M.
    TOMOGRAPHY, 2015, 1 (01) : 37 - 43
  • [5] Machine Learning and Radiomic Features to Predict Overall Survival Time for Glioblastoma Patients
    Chato, Lina
    Latifi, Shahram
    JOURNAL OF PERSONALIZED MEDICINE, 2021, 11 (12):
  • [6] Machine Learning-Based Survival Prediction Models for Progression-Free and Overall Survival in Advanced-Stage Hodgkin Lymphoma
    Jorgensen, Rasmus Rask Kragh
    Bergstroem, Fanny
    Eloranta, Sandra
    Severinsen, Marianne Tang
    Smeland, Knut Bjoro
    Fossa, Alexander
    Christensen, Jacob Haaber
    Hutchings, Martin
    Bo Dahl-Sorensen, Rasmus
    Kamper, Peter
    Glimelius, Ingrid
    Smedby, Karin
    Parsons, Susan
    Rodday, Angie Mae
    Maurer, Matthew
    Evens, Andrew
    El-Galaly, Tarec
    Jakobsen, Lasse Hjort
    JCO CLINICAL CANCER INFORMATICS, 2024, 8
  • [7] Dexamethasone and overall survival and progression free survival in patients with newly diagnosed glioblastoma: a meta-analysis
    Arora, Harshit
    Mammi, Marco
    Patel, Naisargi Manishkumar
    Zyfi, Dea
    Dasari, Hema Reddy
    Yunusa, Ismael
    Simjian, Thomas
    Smith, Timothy R.
    Mekary, Rania A.
    JOURNAL OF NEURO-ONCOLOGY, 2024, 166 (01) : 17 - 26
  • [8] Dexamethasone and overall survival and progression free survival in patients with newly diagnosed glioblastoma: a meta-analysis
    Harshit Arora
    Marco Mammi
    Naisargi Manishkumar Patel
    Dea Zyfi
    Hema Reddy Dasari
    Ismael Yunusa
    Thomas Simjian
    Timothy R. Smith
    Rania A. Mekary
    Journal of Neuro-Oncology, 2024, 166 : 17 - 26
  • [9] Six-month progression-free survival as an alternative primary efficacy endpoint to overall survival in newly diagnosed glioblastoma patients receiving temozolomide
    Polley, Mei-Yin C.
    Lamborn, Kathleen R.
    Chang, Susan M.
    Butowski, Nicholas
    Clarke, Jennifer L.
    Prados, Michael
    NEURO-ONCOLOGY, 2010, 12 (03) : 274 - 282
  • [10] MRI T2 RELAXIVITY IN THE PREDICTION OF PROGRESSION-FREE SURVIVAL IN NEWLY-DIAGNOSED GLIOBLASTOMA: WHOLE BRAIN MEASUREMENTS AND DEEP LEARNING
    Rulseh, Aaron
    Vymazal, Josef
    NEURO-ONCOLOGY, 2022, 24 : 180 - 180