Kaneyama and Klyachko have shown that any torus equivariant vector bundle of rank r over CPn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}\mathbb {P}<^>n$$\end{document} splits if r<n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r < n$$\end{document}. In particular, any such bundle is not slope stable. In contrast, we provide explicit examples of stable equivariant reflexive sheaves of rank r on any polarised toric variety (X, L), for 2 <= r<dim(X)+rank(Pic(X))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\le r< \textrm{dim}(X)+\textrm{rank}(\textrm{Pic}(X))$$\end{document}, and show that the dimension of their singular locus is strictly bounded by n-r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-r$$\end{document}.
机构:
Univ Fed Rio de Janeiro, Inst Matemat, Av Athos da Silveira Ramos 149, BR-21941909 Rio De Janeiro, RJ, BrazilUniv Fed Rio de Janeiro, Inst Matemat, Av Athos da Silveira Ramos 149, BR-21941909 Rio De Janeiro, RJ, Brazil
Clarke, Andrew
Tipler, Carl
论文数: 0引用数: 0
h-index: 0
机构:
Univ Brest, CNRS, Lab Math Bretagne Atlant, UMR 6205, Brest, FranceUniv Fed Rio de Janeiro, Inst Matemat, Av Athos da Silveira Ramos 149, BR-21941909 Rio De Janeiro, RJ, Brazil
机构:
Korea Inst Adv Study, Seoul, South Korea
Coll New Jersey, Dept Math & Stat, Ewing, NJ USAKorea Inst Adv Study, Seoul, South Korea
Goller, Thomas
Lin, Yinbang
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Yau Math Sci Ctr, Beijing, Peoples R China
Tongji Univ, Sch Math Sci, Shanghai, Peoples R ChinaKorea Inst Adv Study, Seoul, South Korea