A Note on Stable Toric Sheaves of Low Rank

被引:0
|
作者
Tipler, Carl [1 ]
机构
[1] Univ Brest, UMR CNRS 6205, Lab Math Bretagne Atlantique, Brest, France
基金
巴西圣保罗研究基金会;
关键词
Toric varieties; Stable sheaves; Equivariant sheaves; Hartshorne's conjecture; EQUIVARIANT VECTOR-BUNDLES; STABILITY;
D O I
10.1007/s00031-024-09899-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Kaneyama and Klyachko have shown that any torus equivariant vector bundle of rank r over CPn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}\mathbb {P}<^>n$$\end{document} splits if r<n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r < n$$\end{document}. In particular, any such bundle is not slope stable. In contrast, we provide explicit examples of stable equivariant reflexive sheaves of rank r on any polarised toric variety (X, L), for 2 <= r<dim(X)+rank(Pic(X))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\le r< \textrm{dim}(X)+\textrm{rank}(\textrm{Pic}(X))$$\end{document}, and show that the dimension of their singular locus is strictly bounded by n-r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-r$$\end{document}.
引用
收藏
页数:9
相关论文
共 50 条