Assessment of the Mechanical Properties and Fragment Characteristics of a 3D-Printed Forearm Orthosis

被引:0
|
作者
Majdak, Mislav [1 ]
Bogovic, Slavica [2 ]
Skoc, Maja Somogyi [3 ]
Mestrovic, Iva Rezic [1 ]
机构
[1] Univ Zagreb, Fac Text Technol, Dept Appl Chem, Zagreb 10000, Croatia
[2] Univ Zagreb, Fac Text Technol, Dept Clothing Technol, Zagreb 10000, Croatia
[3] Univ Zagreb, Fac Text Technol, Dept Mat Fibres & Text Testing, Zagreb 10000, Croatia
关键词
orthosis; 3D printing; 3D modelling; 3D scanning; mechanical properties; microscopic characterization; medical textiles; RADIUS; FRACTURES; PLASTER;
D O I
10.3390/polym16233349
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Distal radius fractures (DRF) are one of the most prevalent injuries a person may sustain. The current treatment of DRF involves the use of casts made from Plaster of Paris or fiberglass. The application of these materials is a serious endeavor that influences their intended use, and should be conducted by specially trained personnel. In this research, with the use of the full-body 3D scanner Vitus Smart, 3D modelling software Rhinoceros 3D, and 3D printer Creality CR-10 max, an easy, yet effective workflow of orthosis fabrication was developed. Furthermore, samples that represent segments of the orthosis were subjected to static loading. Lastly, fragments that occurred due to excessive force were characterized with the use of a digital microscope. It was observed that with the implementation of the designed workflow, a faster 3D printing process was present. Samples subjected to mechanical loading had values that exceeded those of conventional Plaster of Paris; the minimum recorded value was 681 N, while the highest was 914 N. Microscopic characterization enabled a clear insight into the occurrence of fragments, as well as their potential risk. Therefore, in this research, an insight into different stages of fabrication, characterization of undesirable events, as well as the risks they may pose were presented.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Mechanical properties of 3D-printed pentadiamond
    Felix, Levi C.
    Ambekar, Rushikesh S.
    Woellner, Cristiano F.
    Kushwaha, Brijesh
    Pal, Varinder
    Tiwary, Chandra S.
    Galvao, Douglas S.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2022, 55 (46)
  • [2] Mechanical properties of 3D-printed blood vessels
    Wang, Jiyan
    Krishnamoorthy, Srikumar
    Song, Hongtao
    Ma, Changhong
    DYNA, 2020, 95 (05): : 541 - 545
  • [3] Improving the Mechanical Properties of 3D-Printed Metal
    Kabaldin Y.G.
    Anosov M.S.
    Kolchin P.V.
    Shatagin D.A.
    Russian Engineering Research, 2023, 43 (08) : 976 - 979
  • [4] Evaluation of the Mechanical Properties of a 3D-Printed Mortar
    Lee, Hojae
    Kim, Jang-Ho Jay
    Moon, Jae-Heum
    Kim, Won-Woo
    Seo, Eun-A
    MATERIALS, 2019, 12 (24)
  • [5] Structure and Mechanical Properties of 3D-Printed Ceramic Specimens
    Promakhov, V. V.
    Zhukov, A. S.
    Vorozhtsov, A. B.
    Schults, N. A.
    Kovalchuk, S. V.
    Kozhevnikov, S. V.
    Olisov, A. V.
    Klimenko, V. A.
    RUSSIAN PHYSICS JOURNAL, 2019, 62 (05) : 876 - 881
  • [6] Anisotropy in mechanical properties of 3D-printed layered concrete
    Slavcheva, G. S.
    Levchenko, A. V.
    Shvedova, M. A.
    Karakchi-ogly, D. R.
    Babenko, D. S.
    MAGAZINE OF CIVIL ENGINEERING, 2024, 17 (03):
  • [7] Mechanical Properties of 3D-Printed Occlusal Splint Materials
    Prpic, Vladimir
    Spehar, Filipa
    Stajdohar, Dominik
    Bjelica, Roko
    Cimic, Samir
    Par, Matej
    DENTISTRY JOURNAL, 2023, 11 (08)
  • [8] GEOMETRY AND MECHANICAL PROPERTIES OF A 3D-PRINTED TITANIUM MICROSTRUCTURE
    Rehounek, Lubos
    Hajkova, Petra
    Vakrcka, Petr
    Jira, Ales
    9TH ANNUAL CONFERENCE NANO & MACRO MECHANICS 2018, 2018, 15 : 104 - 108
  • [9] Structure and Mechanical Properties of 3D-Printed Ceramic Specimens
    V. V. Promakhov
    A. S. Zhukov
    A. B. Vorozhtsov
    N. A. Schults
    S. V. Kovalchuk
    S. V. Kozhevnikov
    A. V. Olisov
    V. A. Klimenko
    Russian Physics Journal, 2019, 62 : 876 - 881
  • [10] Mechanical properties and deformation curves of the 3D-printed polycarbonate
    Andrianov, I. K.
    Feoktistov, S. I.
    MATERIALS PHYSICS AND MECHANICS, 2023, 51 (01): : 108 - 118