Learning Background Prompts to Discover Implicit Knowledge for Open Vocabulary Object Detection

被引:1
|
作者
Li, Jiaming [1 ]
Zhang, Jiacheng [1 ]
Li, Jichang [1 ,2 ]
Li, Ge [3 ]
Liu, Si [4 ]
Lin, Liang [1 ]
Li, Guanbin [1 ,5 ,6 ]
机构
[1] Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou, Peoples R China
[2] Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R China
[3] Peking Univ, Shenzhen Grad Sch, SECE, Shenzhen, Peoples R China
[4] Beihang Univ, Inst Artificial Intelligence, Beijing, Peoples R China
[5] GuangDong Prov Key Lab Informat Secur Technol, Shenzhen, Guangdong, Peoples R China
[6] Sun Yat Sen Univ, Res Inst, Shenzhen, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1109/CVPR52733.2024.01578
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Open vocabulary object detection (OVD) aims at seeking an optimal object detector capable of recognizing objects from both base and novel categories. Recent advances leverage knowledge distillation to transfer insightful knowledge from pre-trained large-scale vision-language models to the task of object detection, significantly generalizing the powerful capabilities of the detector to identify more unknown object categories. However, these methods face significant challenges in background interpretation and model overfitting and thus often result in the loss of crucial back-ground knowledge, giving rise to sub-optimal inference performance of the detector. To mitigate these issues, we present a novel OVD framework termed LBP to propose learning background prompts to harness explored implicit background knowledge, thus enhancing the detection performance w.r.t. base and novel categories. Specifically, we devise three modules: Background Category-specific Prompt, Background Object Discovery, and Inference Probability Rectification, to empower the detector to discover, represent, and leverage implicit object knowledge explored from background proposals. Evaluation on two benchmark datasets, OV-COCO and OV-LVIS, demonstrates the superiority of our proposed method over existing state-of-the-art approaches in handling the OVD tasks.
引用
收藏
页码:16678 / 16687
页数:10
相关论文
共 50 条
  • [1] Learning to Detect and Segment for Open Vocabulary Object Detection
    Wang, Tao
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 7051 - 7060
  • [2] Multi-modal Prompts with Feature Decoupling for Open-Vocabulary Object Detection
    Wang, Duorui
    Zhao, Xiaowei
    GENERALIZING FROM LIMITED RESOURCES IN THE OPEN WORLD, GLOW-IJCAI 2024, 2024, 2160 : 180 - 194
  • [3] Open-Vocabulary Object Detection With an Open Corpus
    Wang, Jiong
    Zhang, Huiming
    Hong, Haiwen
    Jin, Xuan
    He, Yuan
    Xue, Hui
    Zhao, Zhou
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 6736 - 6746
  • [4] Simple Open-Vocabulary Object Detection
    Minderer, Matthias
    Gritsenko, Alexey
    Stone, Austin
    Neumann, Maxim
    Weissenborn, Dirk
    Dosovitskiy, Alexey
    Mahendran, Aravindh
    Arnab, Anurag
    Dehghani, Mostafa
    Shen, Zhuoran
    Wang, Xiao
    Zhai, Xiaohua
    Kipf, Thomas
    Houlsby, Neil
    COMPUTER VISION, ECCV 2022, PT X, 2022, 13670 : 728 - 755
  • [5] Scaling Open-Vocabulary Object Detection
    Minderer, Matthias
    Gritsenko, Alexey
    Houlsby, Neil
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [6] Exploring Multi-Modal Contextual Knowledge for Open-Vocabulary Object Detection
    Xu, Yifan
    Zhang, Mengdan
    Yang, Xiaoshan
    Xu, Changsheng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 6253 - 6267
  • [7] Distilling DETR with Visual-Linguistic Knowledge for Open-Vocabulary Object Detection
    Li, Liangqi
    Miao, Jiaxu
    Shi, Dahu
    Tan, Wenming
    Ren, Ye
    Yang, Yi
    Pu, Shiliang
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 6478 - 6487
  • [8] Federated fine-grained prompts for vision-language models based on open-vocabulary object detection
    Li, Yu
    APPLIED INTELLIGENCE, 2025, 55 (07)
  • [9] Learning to Prompt for Open-Vocabulary Object Detection with Vision-Language Model
    Du, Yu
    Wei, Fangyun
    Zhang, Zihe
    Shi, Miaojing
    Gao, Yue
    Li, Guoqi
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 14064 - 14073
  • [10] Open-Vocabulary Object Detection Using Captions
    Zareian, Alireza
    Dela Rosa, Kevin
    Hu, Derek Hao
    Chang, Shih-Fu
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 14388 - 14397