Given that smart contracts execute transactions worth hundreds of millions of dollars daily, the issue of smart contract security has attracted considerable attention over the past few years. Traditional methods for detecting vulnerabilities heavily rely on manually developed rules and features, leading to the problems of low accuracy, high false positives, and poor scalability. Although deep learning-inspired approaches were designed to alleviate the problem, most of them rely on monothetic features, which may result in information incompetence during the learning process. Furthermore, the lack of available labeled vulnerability datasets is also a major limitation. To address these issues, we collect and construct a dataset of five labeled smart contract vulnerabilities, and propose DeepFusion, a vulnerability detection method that fuses code representation information, including program slice information and abstraction syntax tree (AST) structured information. First, we develop automated tools to extract contract vulnerability slicing information from source code, and extract structured information from source code-converted AST. Second, code features and global structured features are fused into the data. Finally, the fused data are input into the Bidirectional Long Short-Term Memory+ Attention (BiLSTM+ATT) model for smart contract vulnerability detection. The BiLSTM model can capture long-term dependencies in both directions and is more suitable for processing serialized information generated by DeepFusion, while the attention mechanism can highlight the characteristic information of vulnerabilities. We conducted experiments via collecting a real smart contract dataset. The experimental results show that our method significantly outperforms the existing methods in detecting the vulnerabilities of reentrancy, timestamp dependence, integer overflow and underflow, Use tx.origin for authentication, and Unprotected Self-destruct Instruction by 6.36%, 6.42%, 16.5%, 21.29%, and 25.05%, respectively. To the best of our knowledge, the latter two vulnerabilities are the first to be detected using deep learning methods.