Denoising Diffusion Models for 3D Healthy Brain Tissue Inpainting

被引:0
|
作者
Durrer, Alicia [1 ]
Wolleb, Julia [1 ]
Bieder, Florentin [1 ]
Friedrich, Paul [1 ]
Melie-Garcia, Lester [1 ,2 ]
Pineda, Mario Alberto Ocampo [1 ,2 ]
Bercea, Cosmin I. [3 ,4 ]
Hamamci, Ibrahim Ethem [5 ]
Wiestler, Benedikt [6 ]
Piraud, Marie [7 ]
Yaldizli, Oezguer [1 ,2 ]
Granziera, Cristina [1 ,2 ]
Menze, Bjoern [5 ]
Cattin, Philippe C. [1 ]
Kofler, Florian [6 ,7 ,8 ,9 ]
机构
[1] Univ Basel, Dept Biomed Engn, Basel, Switzerland
[2] Univ Hosp Basel, Basel, Switzerland
[3] Tech Univ Munich, Computat Imaging & AI Med, Munich, Germany
[4] Helmholtz Ctr Munich, Inst Machine Learning Biomed Imaging, Munich, Germany
[5] Univ Zurich, Dept Quantitat Biomed, Zurich, Switzerland
[6] Tech Univ Munich, Klinikum Rechts Isar, Sch Med, Dept Diagnost & Intervent Neuroradiol, Munich, Germany
[7] Helmholtz, Helmholtz AI, Munich, Germany
[8] Tech Univ Munich, TUM Sch Computat Informat & Technol, Dept Comp Sci, Munich, Germany
[9] Tech Univ Munich, TranslaTUM Cent Inst Translat Canc Res, Munich, Germany
来源
关键词
Diffusion Model; Inpainting; Magnetic Resonance Images;
D O I
10.1007/978-3-031-72744-3_9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Monitoring diseases that affect the brain's structural integrity requires automated analysis of magnetic resonance images, e.g., for the evaluation of volumetric changes. However, many of the evaluation tools are optimized for analyzing healthy tissue. To enable the evaluation of scans containing pathological tissue, it is therefore required to restore healthy tissue in the pathological areas. In this work, we explore and extend denoising diffusion probabilistic models (DDPMs) for consistent inpainting of healthy 3D brain tissue. We modify state-of-the-art 2D, pseudo-3D, and 3D DDPMs working in the image space, as well as 3D latent and 3D wavelet DDPMs, and train them to synthesize healthy brain tissue. Our evaluation shows that the pseudo-3D model performs best regarding the structural-similarity index, peak signal-to-noise ratio, and mean squared error. To emphasize the clinical relevance, we fine-tune this model on synthetic multiple sclerosis lesions and evaluate it on a downstream brain tissue segmentation task, where it outperforms the established FMRIB Software Library (FSL) lesion-filling method.
引用
收藏
页码:87 / 97
页数:11
相关论文
共 50 条
  • [1] Denoising diffusion probabilistic models for 3D medical image generation
    Khader, Firas
    Mueller-Franzes, Gustav
    Arasteh, Soroosh Tayebi
    Han, Tianyu
    Haarburger, Christoph
    Schulze-Hagen, Maximilian
    Schad, Philipp
    Engelhardt, Sandy
    Baessler, Bettina
    Foersch, Sebastian
    Stegmaier, Johannes
    Kuhl, Christiane
    Nebelung, Sven
    Kather, Jakob Nikolas
    Truhn, Daniel
    SCIENTIFIC REPORTS, 2023, 13 (01):
  • [2] Denoising diffusion probabilistic models for 3D medical image generation
    Firas Khader
    Gustav Müller-Franzes
    Soroosh Tayebi Arasteh
    Tianyu Han
    Christoph Haarburger
    Maximilian Schulze-Hagen
    Philipp Schad
    Sandy Engelhardt
    Bettina Baeßler
    Sebastian Foersch
    Johannes Stegmaier
    Christiane Kuhl
    Sven Nebelung
    Jakob Nikolas Kather
    Daniel Truhn
    Scientific Reports, 13 (1)
  • [3] RePaint: Inpainting using Denoising Diffusion Probabilistic Models
    Lugmayr, Andreas
    Danelljan, Martin
    Romero, Andres
    Yu, Fisher
    Timofte, Radu
    Van Gool, Luc
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 11451 - 11461
  • [4] Synthetic Microwave 3D Breast Models: A Step Forward with Denoising Diffusion Models
    Shooshtari, Asma Seraj Pour
    Abharian, Nasrin
    LoVetri, Joe
    Khoshdel, Vahab
    2024 IEEE MTT-S INTERNATIONAL MICROWAVE BIOMEDICAL CONFERENCE, IMBIOC 2024, 2024, : 60 - 62
  • [5] 3D Denoising Diffusion Probabilistic Models for 3D microstructure image generation of fuel cell electrodes
    Bentamou, Abdelouahid
    Chretien, Stephane
    Gavet, Yann
    COMPUTATIONAL MATERIALS SCIENCE, 2025, 248
  • [6] Face Inpainting Model Based on Denoising Diffusion Probability Models
    Liu, Ji-Hong
    Huang, Xi-Xiong
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2024, 45 (09): : 1227 - 1234
  • [7] RenderDiffusion: Image Diffusion for 3D Reconstruction, Inpainting and Generation
    Anciukevicius, Titas
    Xu, Zexiang
    Fisher, Matthew
    Henderson, Paul
    Bilen, Hakan
    Mitra, Niloy J.
    Guerrero, Paul
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 12608 - 12618
  • [8] Memory-Efficient 3D Denoising Diffusion Models for Medical Image Processing
    Biederl, Florentin
    Wollebl, Julia
    Durrerl, Alicia
    Sandkuhlerl, Robin
    Cattinl, Philippe C.
    MEDICAL IMAGING WITH DEEP LEARNING, VOL 227, 2023, 227 : 552 - 567
  • [9] Conditional Diffusion Models for Semantic 3D Brain MRI Synthesis
    Dorjsembe, Zolnamar
    Pao, Hsing-Kuo
    Odonchimed, Sodtavilan
    Xiao, Furen
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (07) : 4084 - 4093
  • [10] Innovations in 3D Tissue Models of Human Brain Physiology and Diseases
    Lovett, Michael L.
    Nieland, Thomas J. F.
    Dingle, Yu-Ting L.
    Kaplan, David L.
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (44)