Stone-Gelfand duality for metrically complete lattice-ordered groups

被引:0
|
作者
Abbadini, Marco [1 ]
Marra, Vincenzo [2 ]
Spada, Luca [3 ]
机构
[1] Univ Birmingham, Sch Comp Sci, Birmingham B15 2TT, England
[2] Univ Milan, Dipartimento Matemat Federigo Enr, Via Cesare Saldini 50, I-20133 Milan, Italy
[3] Univ Salerno, Dipartimento Matemat, Piazza Renato Caccioppoli 2, I-84084 Fisciano, SA, Italy
基金
英国科研创新办公室;
关键词
Stone-Gelfand duality; Lattice-ordered group; Compact Hausdorff space; Normal space; Urysohn's lemma; Tychonoff cube; CATEGORIES; RINGS;
D O I
10.1016/j.aim.2024.110067
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend Yosida's 1941 version of Stone-Gelfand duality to metrically complete unital lattice-ordered groups that are no longer required to be real vector spaces. This calls for a generalised notion of compact Hausdorff space whose points carry an arithmetic character to be preserved by continuous maps. The arithmetic character of a point is (the complete isomorphism invariant of) a metrically complete additive subgroup of the real numbers containing 1-namely, either 1 n main result needed to establish the extended duality theorem is a substantial generalisation of Urysohn's Lemma to such "arithmetic" compact Hausdorff spaces. The original duality is obtained by considering the full subcategory of spaces every point of which is assigned the entire group of real numbers. In the Introduction we indicate motivations from and connections with the theory of dimension groups. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/). Z for an integer n = 1, 2, ... , or the whole of R. The
引用
收藏
页数:33
相关论文
共 50 条