Predictive analysis of Somalia's economic indicators using advanced machine learning models

被引:0
|
作者
Osman, Bashir Mohamed [1 ]
Muse, Abdillahi Mohamoud Sheikh [2 ]
机构
[1] Simad Univ, Mogadishu, Somalia
[2] Cyprus Int Univ, Dept Management Informat Syst, Nicosia, North Cyprus, Cyprus
来源
COGENT ECONOMICS & FINANCE | 2024年 / 12卷 / 01期
关键词
GDP forecasting; machine learning; random forest regression; SHAP; economic indicators; Somalia; REGRESSION;
D O I
10.1080/23322039.2024.2426535
中图分类号
F [经济];
学科分类号
02 ;
摘要
Accurate Gross Domestic Product (GDP) prediction is essential for economic planning and policy formulation. This paper evaluates the performance of three machine learning models-Random Forest Regression (RFR), XGBoost, and Prophet-in predicting Somalia's GDP. Historical economic data, including GDP per capita, population, inflation rate, and current account balances, were used in training and testing. Among the models, RFR achieved the best accuracy with the lowest MAE (0.6621%), MSE (1.3220%), RMSE (1.1497%), and R-squared of 0.89. The Diebold-Mariano p-value for RFR (0.042) confirmed its higher predictive accuracy. XGBoost performed well but with slightly higher error, yielding an R-squared of 0.85 and p-value of 0.063. In contrast, Prophet had the highest forecast errors, with an R-squared of 0.78 and p-value of 0.015. For enhanced interpretability, SHapley Additive exPlanations (SHAP) were applied to RFR, identifying lagged current account balance, GDP per capita, and lagged population as key predictors, along with total population and government net lending/borrowing. SHAP plots provided insights into these features' contributions to GDP predictions. This study highlights RFR's effectiveness in economic forecasting and emphasizes the importance of current and lagged economic indicators.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Consumer evaluation using machine learning for the predictive analysis of consumer purchase indicators
    Tang, BaoFu
    Chang, Dong-Meau
    Yang, Junjie
    2024 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WORKSHOPS, WACVW 2024, 2024, : 660 - 665
  • [3] Comparative Analysis of Machine Learning Models for Predictive Analysis of Machine Failures
    Baldovino, Renann G.
    Camacho, Ken Sammuel I.
    Chua-Unsu, Megan Victoria Hillary Y.
    Go, Jed Leonard C.
    Munsayac, Francisco Emmanuel T. Jr, III
    Bugtai, Nilo T.
    9TH INTERNATIONAL CONFERENCE ON MECHATRONICS ENGINEERING, ICOM 2024, 2024, : 288 - 293
  • [4] Smartphones dependency risk analysis using machine-learning predictive models
    Giraldo-Jimenez, Claudia Fernanda
    Gaviria-Chavarro, Javier
    Sarria-Paja, Milton
    Bermeo Varon, Leonardo Antonio
    Villarejo-Mayor, John Jairo
    Rodacki, Andre Luiz Felix
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [5] Smartphones dependency risk analysis using machine-learning predictive models
    Claudia Fernanda Giraldo-Jiménez
    Javier Gaviria-Chavarro
    Milton Sarria-Paja
    Leonardo Antonio Bermeo Varón
    John Jairo Villarejo-Mayor
    André Luiz Felix Rodacki
    Scientific Reports, 12
  • [6] Predictive analysis by ensemble classifier with machine learning models
    Chaya J.D.
    Usha R.N.
    International Journal of Computers and Applications, 2023, 45 (01) : 19 - 26
  • [7] Advanced Machine Learning Techniques for Predictive Analysis of Health Insurance
    Prova, Nuzhat Noor Islam
    2024 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT CYBER PHYSICAL SYSTEMS AND INTERNET OF THINGS, ICOICI 2024, 2024, : 1166 - 1170
  • [8] Soil liquefaction in seismic events: pioneering predictive models using machine learning and advanced regression techniques
    Abbasimaedeh, Pouyan
    ENVIRONMENTAL EARTH SCIENCES, 2024, 83 (07)
  • [9] Soil liquefaction in seismic events: pioneering predictive models using machine learning and advanced regression techniques
    Pouyan Abbasimaedeh
    Environmental Earth Sciences, 2024, 83
  • [10] A predictive study on HCV using automated machine learning models
    Değer, Serbun Ufuk
    Can, Hakan
    Computers in Biology and Medicine, 2025, 188