Towards realistic problem-space adversarial attacks against machine learning in network intrusion detection

被引:0
|
作者
Catillo, Marta [1 ]
Pecchia, Antonio [1 ]
Repola, Antonio [1 ]
Villano, Umberto [1 ]
机构
[1] Univ Sannio, Benevento, Italy
关键词
intrusion detection; machine learning; adversarial examples; supervised learning; Denial of Service; DETECTION SYSTEMS; ROBUSTNESS;
D O I
10.1145/3664476.3669974
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Current trends in network intrusion detection systems (NIDS) capitalize on the extraction of features from network traffic and the use of up-to-date machine and deep learning techniques to infer a detection model; in consequence, NIDS can be vulnerable to adversarial attacks. Differently from the plethora of contributions that apply (and misuse) feature-level attacks envisioned in application domains far from NIDS, this paper proposes a novel approach to adversarial attacks, which consists in a realistic problem-space perturbation of the network traffic. The perturbation is achieved through a traffic control utility. Experiments are based on normal and Denial of Service traffic in both legitimate and adversarial conditions, and the application of four popular techniques to learn the NIDS models. The results highlight the transferability of the adversarial examples generated by the proposed problem-space attack as well as the effectiveness at inducing traffic misclassifications across the NIDS models obtained.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Modeling Realistic Adversarial Attacks against Network Intrusion Detection Systems
    Apruzzese, Giovanni
    Andreolini, Mauro
    Ferretti, Luca
    Marchetti, Mirco
    Colajanni, Michele
    DIGITAL THREATS: RESEARCH AND PRACTICE, 2022, 3 (03):
  • [2] Adversarial attacks against supervised machine learning based network intrusion detection systems
    Alshahrani, Ebtihaj
    Alghazzawi, Daniyal
    Alotaibi, Reem
    Rabie, Osama
    PLOS ONE, 2022, 17 (10):
  • [3] Adversarial Training Against Adversarial Attacks for Machine Learning-Based Intrusion Detection Systems
    Haroon, Muhammad Shahzad
    Ali, Husnain Mansoor
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (02): : 3513 - 3527
  • [4] Adv-Bot: Realistic adversarial botnet attacks against network intrusion detection systems
    Debicha, Islam
    Cochez, Benjamin
    Kenaza, Tayeb
    Debatty, Thibault
    Dricot, Jean -Michel
    Mees, Wim
    COMPUTERS & SECURITY, 2023, 129
  • [5] SoK: Realistic adversarial attacks and defenses for intelligent network intrusion detection
    Vitorino, Joao
    Praca, Isabel
    Maia, Eva
    COMPUTERS & SECURITY, 2023, 134
  • [6] Adversarial Machine Learning Attacks against Intrusion Detection Systems: A Survey on Strategies and Defense
    Alotaibi, Afnan
    Rassam, Murad A.
    FUTURE INTERNET, 2023, 15 (02)
  • [7] Rigorous Evaluation of Machine Learning-based Intrusion Detection Against Adversarial Attacks
    Gungor, Onat
    Li, Elvin
    Shang, Zhengli
    Guo, Yutong
    Chen, Jing
    Davis, Johnathan
    Rosing, Tajana
    2024 IEEE INTERNATIONAL CONFERENCE ON CYBER SECURITY AND RESILIENCE, CSR, 2024, : 152 - 158
  • [8] Adversarial Attacks Against Network Intrusion Detection in IoT Systems
    Qiu, Han
    Dong, Tian
    Zhang, Tianwei
    Lu, Jialiang
    Memmi, Gerard
    Qiu, Meikang
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (13) : 10327 - 10335
  • [9] Evaluating Realistic Adversarial Attacks against Machine Learning Models for Windows PE Malware Detection
    Imran, Muhammad
    Appice, Annalisa
    Malerba, Donato
    FUTURE INTERNET, 2024, 16 (05)
  • [10] Application of adversarial machine learning in network intrusion detection
    Liu, Qixu
    Wang, Junnan
    Yin, Jie
    Chen, Yanhui
    Liu, Jiaxi
    Tongxin Xuebao/Journal on Communications, 2021, 42 (11): : 1 - 12