The interval coloring impropriety of planar graphs

被引:0
|
作者
Lee, Seunghun [1 ]
机构
[1] KAIST Korea Adv Inst Sci & Technol, Dept Math Sci, Daejeon, South Korea
关键词
Interval edge coloring; Improper edge coloring; Interval coloring impropriety; Outerplanar graphs; k-trees; EDGE-COLORINGS;
D O I
10.1016/j.dam.2025.03.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a graph G, we call an edge coloring of G an improper interval edge coloring if for every v is an element of V(G) the colors, which are integers, of the edges incident with v form an integral interval. The interval coloring impropriety of G, denoted by mu(int)(G), is the smallest value k such that G has an improper interval edge coloring where at most k edges of G with a common endpoint have the same color. The purpose of this note is to communicate solutions to two previous questions on interval coloring impropriety, mainly regarding planar graphs. First, we prove mu(int)(G) <= 2 for every outerplanar graph G. This confirms a conjecture by Casselgren and Petrosyan in the affirmative. Secondly, we prove that for each k >= 2, the interval coloring impropriety of k-trees is unbounded. This refutes a conjecture by Carr, Cho, Crawford, Ir & scaron;i & ccaron;, Pai and Robinson. (c) 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:88 / 91
页数:4
相关论文
共 50 条
  • [1] Circular coloring and fractional coloring in planar graphs
    Hu, Xiaolan
    Li, Jiaao
    JOURNAL OF GRAPH THEORY, 2022, 99 (02) : 312 - 343
  • [2] On interval Δ-coloring of bipartite graphs
    A. M. Magomedov
    Automation and Remote Control, 2015, 76 : 80 - 87
  • [3] On interval Δ-coloring of bipartite graphs
    Magomedov, A. M.
    AUTOMATION AND REMOTE CONTROL, 2015, 76 (01) : 80 - 87
  • [4] ON THE TOTAL COLORING OF PLANAR GRAPHS
    BORODIN, OV
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1989, 394 : 180 - 185
  • [5] Coloring powers of planar graphs
    Agnarsson, G
    Halldórsson, MM
    PROCEEDINGS OF THE ELEVENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2000, : 654 - 662
  • [6] COLORING PLANAR GRAPHS IN PARALLEL
    BOYAR, JF
    KARLOFF, HJ
    JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 1987, 8 (04): : 470 - 479
  • [7] Additive Coloring of Planar Graphs
    Tomasz Bartnicki
    Bartłomiej Bosek
    Sebastian Czerwiński
    Jarosław Grytczuk
    Grzegorz Matecki
    Wiktor Żelazny
    Graphs and Combinatorics, 2014, 30 : 1087 - 1098
  • [8] Injective coloring of planar graphs
    Yuehua, Bu
    Chentao, Qi
    Junlei, Zhu
    Ting, Xu
    THEORETICAL COMPUTER SCIENCE, 2021, 857 : 114 - 122
  • [9] Additive Coloring of Planar Graphs
    Bartnicki, Tomasz
    Bosek, Bartlomiej
    Czerwinski, Sebastian
    Grytczuk, Jaroslaw
    Matecki, Grzegorz
    Zelazny, Wiktor
    GRAPHS AND COMBINATORICS, 2014, 30 (05) : 1087 - 1098
  • [10] A Heuristic for the Coloring of Planar Graphs
    De Ita Luna, Guillermo
    Lopez-Ramirez, Cristina
    De Ita-Varela, Ana E.
    Gutierrez-Gomez, Jorge E.
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2020, 354 : 91 - 105