Progress on infinite cluster categories related to triangulations of the (punctured) disk

被引:0
|
作者
Mohammadi, Fatemeh [1 ,2 ,3 ]
Rock, Job Daisie [4 ]
Zaffalon, Francesca [5 ]
机构
[1] Katholieke Univ Leuven, Dept Comp Sci, B-3001 Leuven, Belgium
[2] Katholieke Univ Leuven, Dept Math, B-3001 Leuven, Belgium
[3] UiT The Arctic Univ Norway, Dept Math & Stat, N-9019 Tromso, Norway
[4] Univ Ghent, Dept Math W16, B-9000 Ghent, East Flanders, Belgium
[5] Katholieke Univ Leuven, Dept Math, Celestijnenlaan 200B, B-3001 Leuven, Belgium
关键词
Cluster categories; infinite cluster categories; cluster structures; triangulations; ALGEBRAS; GRASSMANNIANS; DEGENERATIONS; QUIVERS;
D O I
10.1142/S0219498826501203
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this mostly expository paper, we present recent progress on infinite (weak) cluster categories that are related to triangulations of the disk, with and without a puncture. First we recall the notion of a cluster category. Then we move to the infinite setting and survey recent work on infinite cluster categories of types A and D. We conclude with our contributions, two infinite families of infinite (weak) cluster categories of type D. We first present a discrete, infinite version of Schiffler's combinatorial model of the punctured disk with marked points. We then produce each (weak) cluster category starting with representations of thread quivers, taking the derived category, and then taking the appropriate orbit category. We show that the combinatorics in the (weak) cluster categories matches the corresponding combinatorics of the punctured disk with countably-many marked points. We also state two conjectures concerning weak cluster structures inside our (weak) cluster categories.
引用
收藏
页数:40
相关论文
共 13 条
  • [1] Cluster categories of type A∞∞ and triangulations of the infinite strip
    Liu, Shiping
    Paquette, Charles
    MATHEMATISCHE ZEITSCHRIFT, 2017, 286 (1-2) : 197 - 222
  • [2] Cluster categories for marked surfaces: punctured case
    Qiu, Yu
    Zhou, Yu
    COMPOSITIO MATHEMATICA, 2017, 153 (09) : 1779 - 1819
  • [3] Categories for Grassmannian Cluster Algebras of Infinite Rank
    August, Jenny
    Cheung, Man-Wai
    Faber, Eleonore
    Gratz, Sira
    Schroll, Sibylle
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (02) : 1166 - 1210
  • [4] Cluster categories for completed infinity-gons I: Categorifying triangulations
    Canakci, Ilke
    Kalck, Martin
    Pressland, Matthew
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2025, 111 (02):
  • [5] Cluster characters for cluster categories with infinite-dimensional morphism spaces
    Plamondon, Pierre-Guy
    ADVANCES IN MATHEMATICS, 2011, 227 (01) : 1 - 39
  • [6] Cluster algebras via cluster categories with infinite-dimensional morphism spaces
    Plamondon, Pierre-Guy
    COMPOSITIO MATHEMATICA, 2011, 147 (06) : 1921 - 1954
  • [7] On a cluster category of infinite Dynkin type, and the relation to triangulations of the infinity-gon
    Thorsten Holm
    Peter Jørgensen
    Mathematische Zeitschrift, 2012, 270 : 277 - 295
  • [8] On a cluster category of infinite Dynkin type, and the relation to triangulations of the infinity-gon
    Holm, Thorsten
    Jorgensen, Peter
    MATHEMATISCHE ZEITSCHRIFT, 2012, 270 (1-2) : 277 - 295
  • [9] Infinite Families of Potential Modular Data Related to Quadratic Categories
    Grossman, Pinhas
    Izumi, Masaki
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 380 (03) : 1091 - 1150
  • [10] Infinite Families of Potential Modular Data Related to Quadratic Categories
    Pinhas Grossman
    Masaki Izumi
    Communications in Mathematical Physics, 2020, 380 : 1091 - 1150