A hybrid cooling method for 18650 lithium-ion batteries has been investigated using both experimental and numerical approaches for electric vehicle applications. The experimental setup includes a heater section, a phase change material (PCM) reservoir, and a cooling section. The heater section simulates battery heat generation with two cylindrical aluminum housings, each sized to match an 18650 battery, two cartridge heaters, and an aluminum heat sink. An airflow channel is incorporated into the cooling section. Heat transfers sequentially from the heaters to aluminum housings, the heat sink, through three copper-water heat pipes (HPs), to/from the PCM, and finally to the cooled air in the airflow channel. This innovative design eliminates direct contact between the PCM and the batteries, unlike recent studies where the PCM has been in direct contact with the batteries. Decoupling the PCM reduces system design complexity while maintaining effective thermal management. Temperature measurements at various locations are analyzed under different heater powers, air velocities, and scenarios with and without PCM. Results show that the experimental design effectively maintains battery temperatures within acceptable limits. For a power input of 16 W, steady-state temperatures are reduced by approximately 14%, 10%, and 4% with PCM compared to without PCM for air velocities of 2 m/s, 3 m/s, and 4 m/s, respectively. A transient three-dimensional numerical model was developed in ANSYS-FLUENT to provide insights into the underlying physics. The phase change was simulated using the enthalpy-porosity approach, with computational results showing reasonable agreement with experimental data.