Enhanced bio-oil production from Co-pyrolysis of cotton seed and polystyrene waste; fuel upgrading by metal-doped activated carbon catalysts

被引:0
|
作者
Mousavi, Mahshid Vaghar [1 ]
Rezvani, Behnam [1 ]
Hallajisani, Ahmad [1 ]
机构
[1] Univ Tehran, Coll Engn, Caspian Fac Engn, Biofuel Res Lab, Rezvanshahr, Iran
关键词
Co-pyrolysis; Bio-oil; Catalyst; Waste management; Fuel upgrading; BIOMASS; PROTEIN;
D O I
10.1016/j.joei.2025.102007
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
There is an increasing concern about fossil fuel depletion and waste management. Therefore, sustainable conversion of waste and biomass to fuel is crucial. This research delves into the conversion of waste material including cotton seed (CS) biomass and polystyrene (PS) waste into valuable bio-oil through co-pyrolysis. The effects of temperature and residence time on bio-oil production yield were investigated. The optimal conditions occurred at 550 degrees C and 30 min, leading to a bio-oil, gas, and biochar yield of 58 %, 16 %, and 26 % from CS, respectively. Introducing PS in a 3:7 ratio had the greatest positive effect on bio-oil production efficiency compared to the calculated case. Gas chromatography-mass spectrometry (GC-MS) investigation revealed substantial improvement in hydrocarbons and minimization in the oxygen-rich products by blending the waste plastics at 50 wt%. The study extends to the catalytic upgrading of liquid fuel and aromatic chemicals using activated carbon (AC) catalysts doped with metals like Co, Cu, Fe, and Zn. Analytical methods, such as inductively coupled plasma-optical emission spectrometry (ICP-OES), Brunauer-Emmett-Teller (BET), CHNS, X-ray diffraction spectroscopy (XRD), field emission scanning electron microscope (FESEM), and energy-dispersive Xray spectroscopy (EDS) characterize the catalysts, revealing varied impacts on fuel composition and performance. Notably, Fe-Zn/AC and Fe-Co/AC catalysts facilitate bio-oil deoxygenation via decarboxylation and decarbonylation. In contrast, AC, Fe-Cu/AC and Fe/AC catalysts indicate a predominance of hydrodeoxygenation. Enhanced monocyclic aromatic compound yields in bio-oil are observed with metal-modified AC catalysts, marking a significant advancement over unmodified AC.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Thermal and co-pyrolysis of rubber seed cake with waste polystyrene for bio-oil production
    Reshad, Ali Shemsedin
    Tiwari, Pankaj
    Goud, Vaibhav V.
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2019, 139 : 333 - 343
  • [2] Bio-oil production from co-pyrolysis of rice husk and plastic waste
    Anaga, Ekpe S.
    Oji, Akuma A.
    Okwonna, Obumneme O.
    EQA-INTERNATIONAL JOURNAL OF ENVIRONMENTAL QUALITY, 2023, 54 : 27 - 35
  • [3] Properties of Bio-Oil Produced by Co-Pyrolysis of Calotropis procera Stem and Waste Polystyrene
    Radhaboy, G.
    Pugazhvadivu, M.
    NATIONAL CONFERENCE ON ENERGY AND CHEMICALS FROM BIOMASS (NCECB), 2020, 2225
  • [4] The Utilization of Waste Date Seed as Bio-Oil and Activated Carbon by Pyrolysis Process
    Joardder, Mohammad Uzzal Hossain
    Uddin, Md. Shazib
    Islam, Andmohammad Nurul
    ADVANCES IN MECHANICAL ENGINEERING, 2012,
  • [5] Catalytic co-pyrolysis of food waste digestate and corn husk with CaO catalyst for upgrading bio-oil
    Chen, Minzi
    Zhang, Shuping
    Su, Yinhai
    Niu, Xin
    Zhu, Shuguang
    Liu, Xinzhi
    RENEWABLE ENERGY, 2022, 186 : 105 - 114
  • [6] Co-pyrolysis of mixed date pits and olive stones: Identification of bio-oil and the production of activated carbon from bio-char
    Fadhil, Abdelrahman B.
    Kareem, Baraa A.
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2021, 158
  • [7] Enhanced yield and production of aromatics rich fractions in bio-oil through co-pyrolysis of waste biomass and plastics
    Chaturvedi, Ekta
    Roy, Poulomi
    Upadhyay, Rakesh
    Chowdhury, Palash
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2024, 178
  • [8] Microwave assisted co-pyrolysis of biomasses with polypropylene and polystyrene for high quality bio-oil production
    Suriapparao, Dadi V.
    Boruah, Bhanupriya
    Raja, Dharavath
    Vinu, R.
    FUEL PROCESSING TECHNOLOGY, 2018, 175 : 64 - 75
  • [9] Co-torrefaction of corncob and waste cooking oil coupled with fast co-pyrolysis for bio-oil production
    Wu, Qiuhao
    Zhang, Letian
    Ke, Linyao
    Zhang, Qi
    Cui, Xian
    Fan, Liangliang
    Dai, Anqi
    Xu, Chuangxin
    Zhang, Qihang
    Bob, Krik
    Zou, Rongge
    Liu, Yuhuan
    Ruan, Roger
    Wang, Yunpu
    BIORESOURCE TECHNOLOGY, 2023, 370
  • [10] Sustainable production of bio-oil and carbonaceous materials from biowaste co-pyrolysis
    Li, Fanghua
    Zhao, Kena
    Ng, Tsan Sheng
    Dai, Yanjun
    Wang, Chi-Hwa
    CHEMICAL ENGINEERING JOURNAL, 2022, 427