Omics big data for crop improvement: Opportunities and challenges

被引:1
|
作者
Vasupalli, Naresh [1 ,2 ]
Bhat, Javaid Akhter [3 ]
Jain, Priyanka [4 ]
Sri, Tanu [5 ]
Islam, Md Aminul [6 ]
Shivaraj, S. M. [7 ]
Singh, Sunil Kumar [8 ]
Deshmukh, Rupesh [9 ]
Sonah, Humira [9 ]
Lin, Xinchun [1 ,2 ]
机构
[1] Zhejiang A&F Univ, State Key Lab Subtrop Silviculture, Linan 311300, Zhejiang, Peoples R China
[2] Zhejiang A&F Univ, Bamboo Ind Inst, Linan 311300, Zhejiang, Peoples R China
[3] Res Ctr Life Sci Comp, Zhejiang Lab, Hangzhou 311121, Zhejiang, Peoples R China
[4] Amity Univ Uttar Pradesh, Amity Inst Mol Med & Stem Cell Res AIMMSCR, Sect 125, Noida 201313, Uttar Pradesh, India
[5] Punjab Agr Univ, Gurdev Singh Khush Inst Genet Plant Breeding & Bio, Ludhiana 141004, Punjab, India
[6] Majuli Coll, Dept Bot, Majuli 785106, Assam, India
[7] Alliance Univ, Dept Sci, Bengaluru 562106, Karnataka, India
[8] Univ Allahabad, Dept Bot, Stress Resilient Agr Lab, Prayagraj 211002, Uttar Pradesh, India
[9] Cent Univ Haryana, Dept Biotechnol, Jaat 123031, Haryana, India
来源
CROP JOURNAL | 2024年 / 12卷 / 06期
基金
中国国家自然科学基金;
关键词
Big data; GWAS; WGRS; qQTL; TWAS; Systems biology; CRISPR/Cas9; QUANTITATIVE TRAIT LOCI; WIDE ASSOCIATION; GENOMIC DNA; LARGE-SCALE; RICE; ANNOTATION; RESISTANCE; INSIGHTS; REVEAL; BASE;
D O I
10.1016/j.cj.2024.10.007
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
The application of advanced omics technologies in plant science has generated an enormous dataset of sequences, expression profiles, and phenotypic traits, collectively termed "big data" for their significant volume, diversity, and rapid pace of accumulation. Despite extensive data generation, the process of analyzing and interpreting big data remains complex and challenging. Big data analyses will help identify genes and uncover different mechanisms controlling various agronomic traits in crop plants. The insights gained from big data will assist scientists in developing strategies for crop improvement. Although the big data generated from crop plants opens a world of possibilities, realizing its full potential requires enhancement in computational capacity and advances in machine learning (ML) or deep learning (DL) approaches. The present review discuss the applications of genomics, transcriptomics, proteomics, metabolomics, epigenetics, and phenomics "big data" in crop improvement. Furthermore, we discuss the potential application of artificial intelligence to genomic selection. Additionally, the article outlines the crucial role of big data in precise genetic engineering and understanding plant stress tolerance. Also we highlight the challenges associated with big data storage, analyses, visualization and sharing, and emphasize the need for robust solutions to harness these invaluable resources for crop improvement. (c) 2024 Crop Science Society of China and Institute of Crop Science, CAAS. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NCND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:1517 / 1532
页数:16
相关论文
共 50 条
  • [21] Integrating multi-omics data for crop improvement
    Scossa, Federico
    Alseekh, Saleh
    Fernie, Alisdair R.
    JOURNAL OF PLANT PHYSIOLOGY, 2021, 257
  • [22] Surfing the Big Data Wave: Omics Data Challenges in Transplantation
    Ba, Rokhaya
    Geffard, Estelle
    Douillard, Venceslas
    Simon, Francoise
    Mesnard, Laurent
    Vince, Nicolas
    Gourraud, Pierre-Antoine
    Limou, Sophie
    TRANSPLANTATION, 2022, 106 (02) : E114 - E125
  • [23] Opportunities and Challenges in Omics
    MingMing Ning
    Eng H. Lo
    Translational Stroke Research, 2010, 1 : 233 - 237
  • [24] Opportunities and Challenges in Omics
    Ning, MingMing
    Lo, Eng H.
    TRANSLATIONAL STROKE RESEARCH, 2010, 1 (04) : 233 - 237
  • [25] Big Data and Data Science:Opportunities and Challenges of iSchools
    Il-Yeol Song
    Yongjun Zhu
    Journal of Data and Information Science, 2017, (03) : 1 - 18
  • [26] Big Data and Data Science:Opportunities and Challenges of iSchools
    Il-Yeol Song
    Yongjun Zhu
    JournalofDataandInformationScience, 2017, 2 (03) : 1 - 18
  • [27] From Big Data to Big Artificial Intelligence?Algorithmic Challenges and Opportunities of Big Data
    Kristian Kersting
    Ulrich Meyer
    KI - Künstliche Intelligenz, 2018, 32 (1) : 3 - 8
  • [28] From Big Data to Big Artificial Intelligence? Algorithmic Challenges and Opportunities of Big Data
    Kersting, Kristian
    Meyer, Ulrich
    KUNSTLICHE INTELLIGENZ, 2018, 32 (01): : 3 - 8
  • [29] Big Data: Survey, Technologies, Opportunities, and Challenges
    Khan, Nawsher
    Yaqoob, Ibrar
    Hashem, Ibrahim Abaker Targio
    Inayat, Zakira
    Ali, Waleed KamaleldinMahmoud
    Alam, Muhammad
    Shiraz, Muhammad
    Gani, Abdullah
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [30] Modeling and Management of Big Data: Challenges and opportunities
    Gil, David
    Song, Il-Yeol
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2016, 63 : 96 - 99