Low-temperature photoluminescence measurement with a micromachined Joule-Thomson cooler

被引:0
|
作者
Pei, Haiyue [1 ,2 ]
Lu, Yihan [1 ,2 ]
Qi, Limin [1 ,2 ]
Liu, Dongli [3 ]
Zhao, Ding [4 ]
Qiu, Min [1 ,2 ,4 ]
机构
[1] Westlake Univ, Sch Engn, Key Lab 3D Micro Nano Fabricat & Characterizat Zh, Hangzhou 310024, Peoples R China
[2] Westlake Inst Adv Study, Hangzhou 310024, Peoples R China
[3] Westlake Instruments Hangzhou Technol Co Ltd, Hangzhou 310024, Peoples R China
[4] Westlake Inst Optoelect, Hangzhou 311421, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1088/1757-899X/1301/1/012150
中图分类号
O414.1 [热力学];
学科分类号
摘要
This study evaluates the effectiveness of micromachined Joule-Thomson (MJT) cooling for photoluminescence (PL) materials. Achieving low temperatures is crucial for enhancing PL performance in semiconductors. However, the commonly used liquid nitrogen (LN2) cryostats require frequent refills, hindering their long-term operation. The MJT cooler offers a potential solution by enabling integration with devices and longer operating time. To validate its effectiveness, this study conducted low-temperature PL measurements using a nitrogen MJT cooler. A MAPbI(3) thin film was used as the characterization sample owing to its clear PL mechanism. The experiment successfully preserved its temperature-dependent PL property, with an observed orthorhombic phase-change phenomenon between 155-165 K. Furthermore, the system demonstrated short cool-down time (<1 h), minimal temperature impact from laser stimulus (<+/- 0.1 K), sample storage stability, and low coolant consumption.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Sensitivity of micromachined Joule-Thomson cooler to clogging due to moisture
    Cao, H. S.
    Vanapalli, S.
    Holland, H. J.
    Vermeer, C. H.
    ter Brake, H. J. M.
    PROCEEDINGS OF THE 25TH INTERNATIONAL CRYOGENIC ENGINEERING CONFERENCE AND INTERNATIONAL CRYOGENIC MATERIALS CONFERENCE 2014, 2015, 67 : 417 - 422
  • [2] Micromachined Joule-Thomson coolers
    Lerou, P. P. P. M.
    ter Brake, H. J. M.
    Jansen, H. V.
    Burger, J. F.
    Holland, H. J.
    Rogalla, H.
    ADVANCES IN CRYOGENIC ENGINEERING, VOLS 53A AND 53B, 2008, 985 : 614 - 621
  • [3] A micromachined Joule-Thomson cryogenic cooler with parallel two-stage expansion
    Cao, H. S.
    Vanapalli, S.
    Holland, H. J.
    Vermeer, C. H.
    ter Brake, H. J. M.
    INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2016, 69 : 223 - 231
  • [4] HYBRID JOULE-THOMSON CRYOGENIC COOLER
    ANNABLE, RV
    PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS, 1983, 364 : 68 - 73
  • [5] ANALYSIS OF A JOULE-THOMSON CRYOGENIC DETECTOR COOLER
    OREN, A
    GUTFINGER, C
    ISRAEL JOURNAL OF TECHNOLOGY, 1979, 17 (04): : 194 - 200
  • [6] A micromachined Joule-Thomson cryocooler for ice lithography
    Qi, Limin
    Zheng, Rui
    Liu, Dongli
    Pei, Haiyue
    Zhao, Ding
    Qiu, Min
    MICROELECTRONIC ENGINEERING, 2024, 289
  • [7] A miniature Joule-Thomson cooler for optical detectors in space
    Derking, J. H.
    Holland, H. J.
    Tirolien, T.
    ter Brake, H. J. M.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (04):
  • [8] Characterization of a distributed Joule-Thomson effect cooler with pillars
    Geng, Hui
    Cui, Xiaoyu
    She, Hailong
    Chang, Zhihao
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (09) : 13965 - 13977
  • [9] Cooling characteristics of a nitrogen micromachined Joule-Thomson cooler operating from 88.5 K to 295 K
    Qi, Limin
    Liu, Dongli
    Liu, Xiao
    Pei, Haiyue
    Zhao, Ding
    Cao, Haishan
    Qiu, Min
    APPLIED THERMAL ENGINEERING, 2023, 227
  • [10] Performance Analysis of Joule-Thomson Cooler Supplied with Gas Mixtures
    Piotrowska, A.
    Chorowski, M.
    Dorosz, P.
    26TH INTERNATIONAL CRYOGENIC ENGINEERING CONFERENCE & INTERNATIONAL CRYOGENIC MATERIALS CONFERENCE 2016, 2017, 171