Solvent Engineering in Ligand Exchange of the Hole Transport Layer Enables High-Performance PbS Quantum Dot Solar Cells

被引:0
|
作者
Liu, Xiao [1 ]
Han, Zeyao [1 ]
Yuan, Defei [1 ]
Chen, Yong [1 ]
Lu, Ziqi [1 ]
Zhang, Li [1 ]
Liu, Yang [2 ]
Hu, Lilei [3 ]
Sun, Bin [1 ]
机构
[1] Nanjing Univ Posts & Telecommun NJUPT, Inst Adv Mat IAM, Sch Mat Sci & Engn, State Key Lab Organ Elect & Informat Displays, Nanjing 210023, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Mat Sci & Engn, Nanjing 210094, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Microelect, Shanghai 200240, Peoples R China
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2025年 / 16卷 / 04期
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
MULTIPLE EXCITON GENERATION; NANOCRYSTALS;
D O I
10.1021/acs.jpclett.4c03019
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The performance of lead sulfide colloidal quantum dot (PbS-CQD) solar cells has long been hindered by interface defects in the transport layer. Traditionally, 1,2-ethanedithiol (EDT), used in solid-state ligand exchange, has been a common choice as the hole transport layer (HTL) in many PbS-CQD solar cells. However, the rapid reaction rate and chain length mismatch (shorter-chain EDT versus longer-chain oleic acid) during the ligand exchange process often introduce crack defects in the HTL film, resulting in an unexpected low performance. In this work, ethyl acetate (EA) was introduced into acetonitrile (ACN) solution to slow down the ligand exchange rate. With EA's assistance, a high-quality HTL film with fewer cracks was achieved, leading to a reduced trap density from 2.26 x 1016 cm-3 to 1.85 x 1016 cm-3. Consequently, this led to an improved V OC by 27.5 mV and an increased power conversion efficiency (PCE) from 11.01% to 12.16%.
引用
收藏
页码:857 / 862
页数:6
相关论文
共 50 条
  • [1] Solvent Engineering for High-Performance PbS Quantum Dots Solar Cells
    Wu, Rongfang
    Yang, Yuehua
    Li, Miaozi
    Qin, Donghuan
    Zhang, Yangdong
    Hou, Lintao
    NANOMATERIALS, 2017, 7 (08):
  • [2] Control Over Ligand Exchange Reactivity in Hole Transport Layer Enables High-Efficiency Colloidal Quantum Dot Solar Cells
    Biondi, Margherita
    Choi, Min-Jae
    Lee, Seungjin
    Bertens, Koen
    Wei, Mingyang
    Kirmani, Ahmad R.
    Lee, Geonhui
    Kung, Hao Ting
    Richter, Lee J.
    Hoogland, Sjoerd
    Lu, Zheng-Hong
    de Arquer, F. Pelayo Garcia
    Sargent, Edward H.
    ACS ENERGY LETTERS, 2021, 6 (02) : 468 - 476
  • [3] Lithium Salt-Doped Organic Conjugated Hole Transport Layer for High-Performance PbS Quantum Dot Solar Cells
    Yang, Jinpeng
    Wu, Chunyan
    Huang, Tengzuo
    Yu, Fayin
    Ding, Shuo
    Qian, Lei
    Sun, Tao
    Xiang, Chaoyu
    SOLAR RRL, 2023, 7 (15)
  • [4] Organic hole transport materials for high performance PbS quantum dot solar cells
    Zhang, Li
    Wang, Shunqiang
    Shi, Yi
    Xu, Jiazi
    Cao, Shuang
    Deng, Zijian
    Chen, Yong
    Zhang, Junjie
    Yang, Xichuan
    Meng, Zhen
    Fan, Quli
    Sun, Bin
    CHEMICAL COMMUNICATIONS, 2024, 60 (40) : 5294 - 5297
  • [5] Stronger Coupling of Quantum Dots in Hole Transport Layer Through Intermediate Ligand Exchange to Enhance the Efficiency of PbS Quantum Dot Solar Cells
    Wei, Yuyao
    Ding, Chao
    Shi, Guozheng
    Bi, Huan
    Li, Yusheng
    Li, Hua
    Liu, Dong
    Yang, Yongge
    Wang, Dandan
    Chen, Shikai
    Wang, Ruixiang
    Hayase, Shuzi
    Masuda, Taizo
    Shen, Qing
    SMALL METHODS, 2024, 8 (12):
  • [6] CuSx hole transport layer for PbS quantum dot solar cell
    Li, Jinhuan
    Wang, Yinglin
    Zang, Shuaipu
    Pan, Daocheng
    Zhang, Xintong
    Liu, Yichun
    SOLAR ENERGY, 2020, 209 : 118 - 122
  • [7] Hole transport layer selection toward efficient colloidal PbS quantum dot solar cells
    Yang, Gang
    Zhu, Yongsheng
    Huang, Jinshu
    Xu, Xiumei
    Cui, Shaobo
    Lu, Zhiwen
    OPTICS EXPRESS, 2019, 27 (20): : A1338 - A1349
  • [8] Solvent control of the morphology of the hole transport layer for high-performance perovskite solar cells
    Xie, Xiaoyin
    Liu, Guanchen
    Chen, Li
    Li, Shuangcui
    Liu, Zhihai
    CHEMICAL PHYSICS LETTERS, 2017, 687 : 258 - 263
  • [9] Colloidal quantum dot ligand engineering for high performance solar cells
    Wang, Ruili
    Shang, Yuequn
    Kanjanaboos, Pongsakorn
    Zhou, Wenjia
    Ning, Zhijun
    Sargent, Edward H.
    ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (04) : 1130 - 1143
  • [10] Achieving high-performance PbS quantum dot solar cells by improving hole extraction through Ag doping
    Hu, Long
    Zhang, Zhilong
    Patterson, Robert J.
    Hu, Yicong
    Chen, Weijian
    Chen, Chao
    Li, Dengbing
    Hu, Chao
    Ge, Cong
    Chen, Zihan
    Yuan, Lin
    Yan, Chang
    Song, Ning
    Teh, Zhi Li
    Conibeer, Gavin J.
    Tang, Jiang
    Huang, Shujuan
    NANO ENERGY, 2018, 46 : 212 - 219