Privacy-Preserving Face Recognition for Access Control Systems

被引:0
|
作者
Zhang, Sucan [1 ]
Ma, Jianfei [1 ]
Zhang, Mingxuan [1 ]
Hua, Jingyu [1 ]
机构
[1] Nanjing Univ, State Key Lab Novel Software Technol, Nanjing, Jiangsu, Peoples R China
关键词
face recognition; physical adversarial patch; ACS; privacy protection;
D O I
10.1109/MASS62177.2024.00053
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Face recognition (FR) technology, a highly secure biometric authentication method, has been widely applied in physical access control systems (ACSs). However, the facial information uploaded by users in the system is vulnerable to third parties, which can be utilized to train unauthorized FR models, which could be used for illegal identification of users in unknown contexts, posing significant threats to user privacy. Although many privacy-preserving FR methods have been proposed, they are rarely directly applicable to existing physical ACSs because they require invasive modifications to the core FR algorithms in ACSs. In this paper, we present a non-intrusive facial privacy protection method based on adversarial example technique, which does not require to modify any software or hardware of the target ACS. It first adds subtle perturbations that do not affect visual perception to the facial photos submitted by users, ensuring that the photos could pass the identity verification of human administrators of ACSs but the FR models built on them would mis-recognize real users. Then, it trains physical adversarial example stickers using masks as carriers, which, when worn on the mouth, users could be correctly recognized, thus passing through the ACS successfully. According to experiments conducted on multiple test subjects and various face recognition models, the validity of the proposed method has been demonstrated.
引用
收藏
页码:348 / 356
页数:9
相关论文
共 50 条
  • [1] Privacy-Preserving Face Recognition
    Erkin, Zekeriya
    Franz, Martin
    Guajardo, Jorge
    Katzenbeisser, Stefan
    Lagendijk, Inald
    Toftt, Tomas
    PRIVACY ENHANCING TECHNOLOGIES, PROCEEDINGS, 2009, 5672 : 235 - +
  • [2] Efficient Privacy-Preserving Face Recognition
    Sadeghi, Ahmad-Reza
    Schneider, Thomas
    Wehrenberg, Immo
    INFORMATION SECURITY AND CRYPTOLOGY - ISISC 2009, 2010, 5984 : 229 - 244
  • [3] Privacy-preserving lightweight face recognition
    Li, Yuancheng
    Wang, Yimeng
    Li, Daoxing
    NEUROCOMPUTING, 2019, 363 : 212 - 222
  • [4] Privacy-preserving face recognition with outsourced computation
    Xiang, Can
    Tang, Chunming
    Cai, Yunlu
    Xu, Qiuxia
    SOFT COMPUTING, 2016, 20 (09) : 3735 - 3744
  • [5] Privacy-Preserving Face Recognition in the Frequency Domain
    Wang, Yinggui
    Liu, Jian
    Luo, Man
    Yang, Le
    Wang, Li
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 2558 - 2566
  • [6] Privacy-preserving face recognition with outsourced computation
    Can Xiang
    Chunming Tang
    Yunlu Cai
    Qiuxia Xu
    Soft Computing, 2016, 20 : 3735 - 3744
  • [7] Privacy-Preserving Decentralized Access Control for Cloud Storage Systems
    Chen, Jianwei
    Ma, Huadong
    2014 IEEE 7TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING (CLOUD), 2014, : 507 - 514
  • [8] Lightweight Privacy-Preserving Ensemble Classification for Face Recognition
    Ma, Zhuo
    Liu, Yang
    Liu, Ximeng
    Ma, Jianfeng
    Ren, Kui
    IEEE INTERNET OF THINGS JOURNAL, 2019, 6 (03): : 5778 - 5790
  • [9] Generating bimodal privacy-preserving data for face recognition
    Tomasevic, Darian
    Boutros, Fadi
    Damer, Naser
    Peer, Peter
    Struc, Vitomir
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
  • [10] Towards efficient privacy-preserving face recognition in the cloud
    Guo, Shangwei
    Xiang, Tao
    Li, Xiaoguo
    SIGNAL PROCESSING, 2019, 164 (320-328) : 320 - 328