Influence of Water Content on Electrochemical CO2 Reduction in Acetonitrile Solution on Cu Electrodes

被引:0
|
作者
Deacon-Price, Connor [1 ]
Chen, Nina [1 ]
Lal, Ashique [1 ]
Broersen, Pim [1 ]
Meijer, Evert Jan [1 ]
Garcia, Amanda C. [1 ]
机构
[1] Univ Amsterdam, Vant Hoff Inst Mol Sci, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands
基金
荷兰研究理事会;
关键词
Cu electrode; Electrochemical reduction of CO2; Organic solvent; Preferential adsorption; Water effect; HYDROGEN EVOLUTION REACTION; CARBON-DIOXIDE; TETRAALKYLAMMONIUM IONS; AQUEOUS-SOLUTIONS; ELECTROREDUCTION; MECHANISM; DENSITY; CONVERSION; DYNAMICS; MONOXIDE;
D O I
10.1002/cctc.202401332
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The electrochemical reduction of CO2 (CO2RR) on copper electrodes in acetonitrile (MeCN) solutions offers a promising route for converting CO2 into valuable products but competes with the hydrogen evolution reaction (HER). This study systematically explores the impact of varying water content in MeCN on the selectivity and efficiency of CO2RR and HER. Cyclic voltammetry shows that increasing water content shifts onset potentials and Tafel slopes, indicating changes in reaction mechanisms and rate-determining steps. In dry MeCN, CO2RR predominates due to high CO2 solubility and limited proton availability, but as water content increases, HER kinetics improve, eventually dominating the reaction at higher water concentrations. In situ FTIR spectroscopy and molecular dynamics simulations reveal that water preferentially adsorbs onto the copper electrode surface, enhancing stabilization of reaction intermediates and facilitating HER. These findings provide critical insights into optimizing electrochemical systems for selective CO2 reduction by controlling water content, offering a pathway for improved electrocatalytic performance.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Electrochemical reduction of CO2 in water-acetonitrile mixtures on nanostructured Cu electrode
    Diaz-Buque, Alvaro
    Sandoval-Rojas, Andrea P.
    Felipe Molina-Osorio, Andres
    Feliu, Juan M.
    Suarez-Herrera, Marco F.
    ELECTROCHEMISTRY COMMUNICATIONS, 2015, 61 : 74 - 77
  • [2] ELECTROCHEMICAL REDUCTION OF CO2 AT CU+AU ELECTRODES
    KYRIACOU, G
    ANAGNOSTOPOULOS, A
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1992, 328 (1-2): : 233 - 243
  • [3] Role of a Hydroxide Layer on Cu Electrodes in Electrochemical CO2 Reduction
    Iijima, Go
    Inomata, Tomohiko
    Yamaguchi, Hitoshi
    Ito, Miho
    Masuda, Hideki
    ACS CATALYSIS, 2019, 9 (07): : 6305 - 6319
  • [4] Electrolyte Dependence for the Electrochemical CO2 Reduction Activity on Cu(111) Electrodes
    Yoshihara, Naoki
    Arita, Mai
    Noda, Masaru
    CHEMISTRY LETTERS, 2017, 46 (01) : 125 - 127
  • [5] Electrochemical reduction of CO2 at metallic electrodes
    Augustynski, J
    Kedzierzawski, P
    Jermann, B
    ADVANCES IN CHEMICAL CONVERSIONS FOR MITIGATING CARBON DIOXIDE, 1998, 114 : 107 - 116
  • [6] Influence of electrode distance on the electrochemical reduction of CO2 in aqueous solution
    Liu, Junyu
    Zhou, Yue
    Peng, Luwei
    Qiao, Jinli
    Jung, Joey
    ELECTROCHEMICAL ENGINEERING GENERAL SESSION -AND- CHARACTERIZATION OF ELECTROCHEMICAL REACTORS: FLUID DYNAMICS AND CURRENT DISTRIBUTION, 2018, 86 (04): : 121 - 128
  • [7] Cu nanowires for electrochemical reduction of CO2 and CO
    Raciti, David
    Wang, Chao
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [8] Cu nanowires for electrochemical reduction of CO2 and CO
    Raciti, David
    Wang, Chao
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [9] Electrochemical reduction of CO2 on electrodeposited Cu electrodes crystalline phase sensitivity on selectivity
    Keerthiga, Gopalram
    Viswanathan, Balasubramanian
    Chetty, Raghuram
    CATALYSIS TODAY, 2015, 245 : 68 - 73
  • [10] Electrochemical CO2 Reduction on Copper in Propylene Carbonate: Influence of Water Content and Temperature on the Product Distribution
    Burgers, Iris
    Perez-Gallent, Elena
    Goetheer, Earl
    Kortlever, Ruud
    ENERGY TECHNOLOGY, 2023, 11 (08)