Electrolyte Engineering of Hard Carbon for Sodium-Ion Batteries: From Mechanism Analysis to Design Strategies

被引:2
|
作者
Cui, Keying [1 ,2 ]
Hou, Ruilin [1 ,2 ]
Zhou, Haoshen [2 ]
Guo, Shaohua [1 ,2 ]
机构
[1] Nanjing Univ, Lab Power & Energy Storage Batteries, Shenzhen Res Inst, Shenzhen 518000, Peoples R China
[2] Nanjing Univ, Ctr Energy Storage Mat & Technol, Coll Engn & Appl Sci, Jiangsu Key Lab Artificial Funct Mat,Natl Lab Soli, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划; 中国博士后科学基金;
关键词
electrolyte engineering; hard carbon; ion transport; sodium ion batteries; solid electrolyte interphase; ETHER-BASED ELECTROLYTE; LONG CYCLE LIFE; ELECTROCHEMICAL PERFORMANCE; FLUOROETHYLENE CARBONATE; INTERPHASE FORMATION; ANODE; REACTIVITY; PROGRESS;
D O I
10.1002/adfm.202419275
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The hard carbon (HC) anodes with desirable electrochemical performances including high initial Coulombic efficiency, superior rate performance and long-term cycling play an indispensable role in the practical application of sodium ion batteries (SIBs), which are closely related to the electrolytes them matched. Fully analyzing the mechanism of electrolyte engineering for HC anodes is crucial for promoting the commercialization of SIBs, but is still lacking. In this review, the correlation between physicochemical properties of the electrolyte and the electrochemical performance of HC is first summarized. And point out the crucial role of electrolyte properties, including ion conductivity, de-solvation energy, and interface passivation ability for the Na+ storage in HC. Then, the formation process, composition, as well as structure of solid electrolyte interphase (SEI) on HC surface are mainly discussed, and the structure-activity relationship of SEI is analyzed in depth. Moreover, based on the mechanism analysis, relevant electrolyte design strategies have been summarized. Finally, the challenges and future development directions of the electrolyte engineering of HC are proposed. This review is expected to provide professional theoretical guidance for the development of electrolyte and contribute to the rational design of high-performance HC anodes, promoting the industrialization of SIBs.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Analysis of the Solid Electrolyte Interphase on Hard Carbon Electrodes in Sodium-Ion Batteries
    Carboni, Marco
    Manzi, Jessica
    Armstrong, Antony Robert
    Billaud, Juliette
    Brutti, Sergio
    Younesi, Reza
    CHEMELECTROCHEM, 2019, 6 (06) : 1745 - 1753
  • [2] Synthesis strategies of hard carbon anodes for sodium-ion batteries
    Yin, Jian
    Zhang, Ye Shui
    Liang, Hanfeng
    Zhang, Wenli
    Zhu, Yunpei
    MATERIALS REPORTS: ENERGY, 2024, 4 (02):
  • [3] Bridging Microstructure and Sodium-Ion Storage Mechanism in Hard Carbon for Sodium Ion Batteries
    Zeng, Yuejing
    Yang, Jin
    Yang, Huiya
    Yang, Yang
    Zhao, Jinbao
    ACS ENERGY LETTERS, 2024, 9 (03): : 1184 - 1191
  • [4] Engineering homotype heterojunctions in hard carbon to induce stable solid electrolyte interfaces for sodium-ion batteries
    Yu, Chengxin
    Li, Yu
    Ren, Haixia
    Qian, Ji
    Wang, Shuo
    Feng, Xin
    Liu, Mingquan
    Bai, Ying
    Wu, Chuan
    CARBON ENERGY, 2023, 5 (01)
  • [5] Engineering homotype heterojunctions in hard carbon to induce stable solid electrolyte interfaces for sodium-ion batteries
    Chengxin Yu
    Yu Li
    Haixia Ren
    Ji Qian
    Shuo Wang
    Xin Feng
    Mingquan Liu
    Ying Bai
    Chuan Wu
    Carbon Energy, 2023, 5 (01) : 33 - 45
  • [6] Hard carbon for sodium-ion batteries: progress, strategies and future perspective
    Wu, Chun
    Yang, Yunrui
    Zhang, Yinghao
    Xu, Hui
    He, Xiangxi
    Wu, Xingqiao
    Chou, Shulei
    CHEMICAL SCIENCE, 2024, 15 (17) : 6244 - 6268
  • [7] Electrolyte Design Strategies for Aqueous Sodium-Ion Batteries: Progress and Prospects
    Xing, Zhao
    Zhao, Wenxi
    Yu, Binkai
    Wang, Yuqiu
    Zhou, Limin
    Xiong, Pan
    Chen, Mingzhe
    Zhu, Junwu
    SMALL, 2024, 20 (48)
  • [8] Status and strategies of electrolyte engineering for low-temperature sodium-ion batteries
    Yang, Su
    Cheng, Kaipeng
    Cao, Zhenjiang
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (22) : 13059 - 13080
  • [9] Hard Carbons as Anodes in Sodium-Ion Batteries: Sodium Storage Mechanism and Optimization Strategies
    Liu, Liyang
    Tian, Ye
    Abdussalam, Abubakar
    Gilani, Muhammad Rehan Hasan Shah
    Zhang, Wei
    Xu, Guobao
    MOLECULES, 2022, 27 (19):
  • [10] Advances in the structural engineering and commercialization processes of hard carbon for sodium-ion batteries
    Yang, Cheng
    Zhao, Jiahua
    Dong, Bo
    Lei, Ming
    Zhang, Xiwen
    Xie, Weibin
    Chen, Mingzhe
    Zhang, Kai
    Zhou, Limin
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (03) : 1340 - 1358