Multifunctional small molecule interface management for efficient planar perovskite solar cells

被引:0
|
作者
Zhou, Rui [1 ]
Hu, Xin [1 ]
Li, Haijin [1 ]
Zhao, Huiyao [1 ]
Wei, Yanbei [1 ]
Qu, Jun [1 ]
Chen, Yangdi [1 ]
Su, Liping [2 ]
Jisi, Longhao [1 ]
Zhang, Wenfeng [1 ]
机构
[1] Southwest Petr Univ, Sch New Energy & Mat, Chengdu 610500, Peoples R China
[2] Southwest Petr Univ, Sch Elect Informat, Chengdu 610500, Peoples R China
关键词
D O I
10.1039/d5cp00182j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Establishing an optimal configuration for the electron transport layer (ETL) and a compliant perovskite interface is pivotal in advancing the creation of high-performance, hysteresis-free, and resilient perovskite solar cells (PSCs). Amongst various strategies, interface engineering emerges as a highly feasible and potent means to alleviate interfacial non-radiative recombinations, issues typically rooted in defects, tensile stresses, and energy level discrepancies at the interface. Our investigation solidifies the efficacy of incorporating Imidazolium Salt (NOI:1N-3-acetic acid-imidazole) within the SnO2/perovskite interface as a strategic intervention for remodeling this vital frontier. The integration of NOI fosters a synergistic interface, seamlessly bridging the perovskite with the SnO2 ETL, effectively mitigating tensile strains and passivating underlying interface defects. Implementation of the NOI-based treatment regimen has notably propelled device performance, evidenced by a PCE escalation from 21.5% to 23.3%, coupled with a marked increase in open-circuit voltage (VOC) from 1.15 V to 1.18 V. Consequently, this methodology presents a concise yet powerful pathway for augmenting PSCs' operational excellence.
引用
收藏
页码:7232 / 7239
页数:8
相关论文
共 50 条
  • [1] Multifunctional Small Molecule as Buried Interface Passivator for Efficient Planar Perovskite Solar Cells
    Wu, Meizi
    Duan, Yuwei
    Yang, Lu
    You, Peng
    Li, Zhijun
    Wang, Jungang
    Zhou, Hui
    Yang, Shaomin
    Xu, Dongfang
    Zou, Hong
    Liu, Zhike
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (22)
  • [2] Multifunctional Molecule-Modified SnO2-Perovskite Interface for Efficient Planar Perovskite Solar Cells
    Xin, Xu
    Yang, Jiabao
    Pu, Xingyu
    Li, Yuke
    Wang, Tong
    Chen, Hui
    Cao, Qi
    Zhang, Yixin
    Tojiboyev, Ilhom
    Salari, Hadi
    Ye, Fei
    Li, Xuanhua
    ADVANCED MATERIALS INTERFACES, 2022, 9 (14)
  • [3] Interface Regulation via Tailored Multifunctional Small Molecule toward Efficient Perovskite Solar Cells
    Li, Wenjing
    Li, Yongchun
    Wang, Deng
    Pan, Weichun
    Wei, Shanyue
    Wu, Jihuai
    Guo, Xugang
    Lan, Zhang
    ADVANCED FUNCTIONAL MATERIALS, 2025,
  • [4] A multifunctional chemical linker in a buried interface for stable and efficient planar perovskite solar cells
    Geng, Quanming
    Xu, Zong
    Song, Wenwu
    Hu, Yanqiang
    Sun, Guangping
    Wang, Jin
    Wang, Minmin
    Sun, Tongming
    Tang, Yanfeng
    Zhang, Shufang
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (36) : 21697 - 21704
  • [5] Efficient and flexible solar cells with improved stability through incorporation of a multifunctional small molecule at PEDOT:PSS/perovskite interface
    Ma, Shuang
    Liu, Xuepeng
    Wu, Yunzhao
    Tao, Ye
    Ding, Yong
    Cai, Molang
    Dai, Songyuan
    Liu, Xiaoyan
    Alsaedi, Ahmed
    Hayat, Tasawar
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2020, 208
  • [6] Multifunctional Histidine Cross-Linked Interface toward Efficient Planar Perovskite Solar Cells
    Li, Yan
    Li, Siqi
    Shen, Yujie
    Han, Xue
    Li, Yao
    Yu, Yingchun
    Huang, Meilan
    Tao, Xia
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (42) : 47872 - 47881
  • [7] Multifunctional Benzoquinone Additive for Efficient and Stable Planar Perovskite Solar Cells
    Qin, Chuanjiang
    Matsushima, Toshinori
    Fujihara, Takashi
    Adachi, Chihaya
    ADVANCED MATERIALS, 2017, 29 (04)
  • [8] Multifunctional Biomolecules Bridging a Buried Interface for Efficient Perovskite Solar Cells
    Wang, Yifei
    Li, Yan
    Deng, Fei
    Song, Xiangfei
    Zhang, Wanqi
    Tao, Xia
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (16) : 20533 - 20541
  • [9] Synergistic Optimization of Buried Interface by Multifunctional Organic–Inorganic Complexes for Highly Efficient Planar Perovskite Solar Cells
    Heng Liu
    Zhengyu Lu
    Weihai Zhang
    Hongkang Zhou
    Yu Xia
    Yueqing Shi
    Junwei Wang
    Rui Chen
    Haiping Xia
    Hsing-Lin Wang
    Nano-Micro Letters, 2023, 15
  • [10] Synergistic Optimization of Buried Interface by Multifunctional Organic–Inorganic Complexes for Highly Efficient Planar Perovskite Solar Cells
    Heng Liu
    Zhengyu Lu
    Weihai Zhang
    Hongkang Zhou
    Yu Xia
    Yueqing Shi
    Junwei Wang
    Rui Chen
    Haiping Xia
    Hsing-Lin Wang
    Nano-Micro Letters, 2023, 15 (09) : 513 - 527