机构:
Astellas Pharm Global Dev Inc, Biostat, Data Sci, Northbrook, IL USAUniv Tsukuba, Inst Med, Dept Biostat, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058575, Japan
Yamaguchi, Yusuke
[2
]
Ohigashi, Tomohiro
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tsukuba, Dept Biostat, Tsukuba Clin Res & Dev Org, Tsukuba, JapanUniv Tsukuba, Inst Med, Dept Biostat, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058575, Japan
Missing data;
robust variance;
longitudinal data;
R package;
simulation study;
D O I:
10.1080/10543406.2024.2420632
中图分类号:
R9 [药学];
学科分类号:
1007 ;
摘要:
The mixed model for repeated measures (MMRM) analysis is sometimes used as a primary statistical analysis for a longitudinal randomized clinical trial. When the MMRM analysis is implemented in ordinary statistical software, the standard error of the treatment effect is estimated by assuming orthogonality between the fixed effects and covariance parameters, based on the characteristics of the normal distribution. However, orthogonality does not hold unless the normality assumption of the error distribution holds, and/or the missing data are derived from the missing completely at random structure. Therefore, assuming orthogonality in the MMRM analysis is not preferable. However, without the assumption of orthogonality, the small-sample bias in the standard error of the treatment effect is significant. Nonetheless, there is no method to improve small-sample performance. Furthermore, there is no software that can easily implement inferences on treatment effects without assuming orthogonality. Hence, we propose two small-sample adjustment methods inflating standard errors that are reasonable in ideal situations and achieve empirical conservatism even in general situations. We also provide an R package to implement these inference processes. The simulation results show that one of the proposed small-sample adjustment methods performs particularly well in terms of underestimation bias of standard errors; consequently, the proposed method is recommended. When using the MMRM analysis, our proposed method is recommended if the sample size is not large and between-group heteroscedasticity is expected.
机构:
Janssen Pharmaceut KK, Dept Biostat, Chiyoda Ku, 5-2 Nishi Kanda 3 Chome, Tokyo 1010065, Japan
Grad Univ Adv Studies, Sch Multidisciplinary Sci, Dept Stat Sci, 10-3 Midori Cho, Tachikawa, Tokyo 1908562, JapanJanssen Pharmaceut KK, Dept Biostat, Chiyoda Ku, 5-2 Nishi Kanda 3 Chome, Tokyo 1010065, Japan
Ukyo, Yoshifumi
Noma, Hisashi
论文数: 0引用数: 0
h-index: 0
机构:
Inst Stat Math, Dept Data Sci, 10-3 Midori Cho, Tachikawa, Tokyo 1908562, JapanJanssen Pharmaceut KK, Dept Biostat, Chiyoda Ku, 5-2 Nishi Kanda 3 Chome, Tokyo 1010065, Japan
Noma, Hisashi
Maruo, Kazushi
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tsukuba, Fac Med, Dept Biostat, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058575, JapanJanssen Pharmaceut KK, Dept Biostat, Chiyoda Ku, 5-2 Nishi Kanda 3 Chome, Tokyo 1010065, Japan
Maruo, Kazushi
Gosho, Masahiko
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tsukuba, Fac Med, Dept Biostat, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058575, JapanJanssen Pharmaceut KK, Dept Biostat, Chiyoda Ku, 5-2 Nishi Kanda 3 Chome, Tokyo 1010065, Japan
机构:
Univ Tsukuba, Dept Biostat, Fac Med, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058575, JapanUniv Tsukuba, Dept Biostat, Fac Med, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058575, Japan
Maruo, Kazushi
Ishii, Ryota
论文数: 0引用数: 0
h-index: 0
机构:
Keio Univ Hosp, Biostat Unit, Clin & Translat Res Ctr, Tokyo, JapanUniv Tsukuba, Dept Biostat, Fac Med, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058575, Japan
Ishii, Ryota
Yamaguchi, Yusuke
论文数: 0引用数: 0
h-index: 0
机构:
Astellas Pharma Inc, Data Sci, Dev, Tokyo, JapanUniv Tsukuba, Dept Biostat, Fac Med, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058575, Japan
机构:
Univ Calif Los Angeles, Sch Publ Hlth, Dept Biostat, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Sch Publ Hlth, Dept Biostat, Los Angeles, CA 90095 USA
Brumback, BA
Hernán, MA
论文数: 0引用数: 0
h-index: 0
机构:Univ Calif Los Angeles, Sch Publ Hlth, Dept Biostat, Los Angeles, CA 90095 USA
Hernán, MA
Haneuse, SJPA
论文数: 0引用数: 0
h-index: 0
机构:Univ Calif Los Angeles, Sch Publ Hlth, Dept Biostat, Los Angeles, CA 90095 USA
Haneuse, SJPA
Robins, JM
论文数: 0引用数: 0
h-index: 0
机构:Univ Calif Los Angeles, Sch Publ Hlth, Dept Biostat, Los Angeles, CA 90095 USA