共 50 条
Delphinidin induces a fast-to-slow muscle fiber type shift through the AMPK signaling pathway in C2C12 myotubes
被引:0
|作者:
Murata, Motoki
[1
,2
]
Takahashi, Rina
[2
]
Marugame, Yuki
[3
]
Fujimura, Yoshinori
[3
]
Tachibana, Hirofumi
[3
]
机构:
[1] Ehime Univ, Adv Res Support Ctr ADRES, Matsuyama, Ehime, Japan
[2] Ehime Univ, Grad Sch Agr, Matsuyama, Ehime, Japan
[3] Kyushu Univ, Fac Agr, Dept Biosci & Biotechnol, Div Appl Biol Chem, 744 Motooka,Nishi ku, Fukuoka, Fukuoka 8190395, Japan
关键词:
Anthocyanidin;
MyHC;
AMPK;
SKELETAL-MUSCLE;
MYOSIN ISOFORMS;
FAST-TWITCH;
MECHANISMS;
PHOSPHORYLATION;
ANTHOCYANIDINS;
DEHYDROGENASE;
PGC-1-ALPHA;
EXPRESSION;
CONVERSION;
D O I:
10.1016/j.bbrep.2024.101884
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Delphinidin, a plant anthocyanidin, suppresses disuse muscle atrophy in mice. However, its effect on muscle fiber type shift is unclear. To examine whether delphinidin affects skeletal muscle fiber type, differentiated C2C12 cells were treated with delphinidin. Results revealed that delphinidin upregulated the mRNA expression of myosin heavy chain type I (MyHCI), troponin C1, troponin I1, and MyHCIIx and increased slow MyHC protein level in C2C12 myotubes. Delphinidin also enhanced succinic dehydrogenase (SDH) activities and suppressed lactate dehydrogenase (LDH) activity. Adenosine monophosphate-activated protein kinase (AMPK) inhibition attenuated delphinidin-induced MyHCI upregulation and MyHCIIb downregulation. We investigated the effect of delphinidin on the upstream factors involved in AMPK activation. Delphinidin increased liver kinase B1 (LKB1) phosphorylation and nuclear respiratory factor 1 (NRF1) and calcium/calmodulin-dependent protein kinase 2 (CaMKK2) protein levels. In conclusion, delphinidin induced muscle fiber type conversion from fast-twitch to slow-twitch muscles through the AMPK signaling pathway.
引用
收藏
页数:7
相关论文