Metabolic and molecular basis of flavonoid biosynthesis in Lycii fructus: An integration of metabolomic and transcriptomic analysis

被引:0
|
作者
Tong, Limei [1 ]
Jiang, Yinxiu [1 ]
Zhang, Xinrun [1 ]
Zhang, Xia [2 ]
Zhang, Wenhua [3 ]
Ren, Gang [4 ]
Chen, Zhanping [4 ]
Zhao, Yuling [5 ]
Guo, Sheng [1 ]
Yan, Hui [1 ]
Pan, Yang [1 ]
Duan, Jin-ao [1 ]
Zhang, Fang [1 ]
机构
[1] Nanjing Univ Chinese Med, Jiangsu Collaborat Innovat Ctr Chinese Med Resourc, Sch Pharm, Nanjing 210023, Peoples R China
[2] Ningxia Med Univ, Sch Pharm, Key Lab Minor Med Modernizat, Minist Educ, Yinchuan 750021, Peoples R China
[3] Bairuiyuan Gouqi Co Ltd, Yinchuan 750200, Peoples R China
[4] Haixi Agr & Anim Husb Technol Extens Serv Ctr, Delingha 817000, Peoples R China
[5] Jinghe Gouqi Ind Dev Ctr Bortala Mongolian Autonom, Bortala 833399, Peoples R China
基金
中国国家自然科学基金;
关键词
Lycii fructus; Flavonoids; Biosynthesis; Transcriptomics; Metabolomics; REVEAL;
D O I
10.1016/j.jpba.2024.116653
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Flavonoids serve as bioactive components and contribute to medicinal and nutritional profile of Lycii fructus. However, there is limited information regarding the influence of ecological environments on the flavonoid biosynthesis pathway. In this study, we integrated transcriptome sequencing and metabonomic techniques across three distinct cultivation regions to elucidate the processes of flavonoids biosynthesis and the associated gene expression levels in L. fructus. LC-MS/MS based metabolomics revealed significant variations in metabolite profiles including 43 differential flavonoid metabolites, predominantly consisting of flavanol compounds across diverse regions. Additionally, 154 significantly differentially expressed genes (DEGs) were categorized in the flavonoid biosynthesis identified by de novo transcriptome assembly. Transcription factors C2C2 MYB, NAC, WRKY, AP2/ERF and B3 superfamily were the mainly hub genes regulating the flavonoids biosynthesis. The flavonoid pathway was built through integrated analysis of DEGs and DAMs to illustrate the molecular mechanism of flavonoid biosynthesis. Precipitation and temperature may serve as the primary environmental factors that affected the flavonoids variations. This study proposed a schematic of flavonoid biosynthesis in L. fructus, and further provided evidence for environmental response of L. fructus.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Integrated metabolomic and transcriptomic analysis revealed the flavonoid biosynthesis and regulation in Areca catechu
    Yu, Dong
    Zhang, Kelan
    Wu, Jiao
    Li, Xinyu
    Zhou, Guangzhen
    Wan, Yinglang
    PHYTOCHEMICAL ANALYSIS, 2023, 34 (03) : 372 - 380
  • [2] Integrated metabolomic and transcriptomic analysis of flavonoid biosynthesis in Ricinus communis L.
    Li, Hua
    Xu, Congping
    Zhou, Shen
    Huang, Sishu
    Wu, Zichen
    Jiangfang, Yiding
    Liu, Xianqing
    Zhan, Chuansong
    Luo, Jie
    INDUSTRIAL CROPS AND PRODUCTS, 2024, 222
  • [3] Joint Transcriptomic and Metabolomic Analysis Reveals Differential Flavonoid Biosynthesis in a High-Flavonoid Strawberry Mutant
    Lin, Yuanxiu
    Hou, Guoyan
    Jiang, Yuyan
    Liu, Xiaoyang
    Yang, Min
    Wang, Liangxin
    Long, Yu
    Li, Mengyao
    Zhang, Yunting
    Wang, Yan
    Chen, Qing
    Zhang, Yong
    Wang, Xiaorong
    Tang, Haoru
    Luo, Ya
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [4] Transcriptomic and Metabolomic Analyses Provide Insights Into the Flavonoid Biosynthesis in Dangshen
    Liu, Xuxia
    Ma, Haitang
    Liu, Xiaoling
    Wang, Xin
    Chen, Zhengjun
    Yang, Jie
    Luo, Wenrong
    Li, Qin
    Yang, Fude
    Li, Fang
    PHYTOCHEMICAL ANALYSIS, 2025,
  • [5] Integrated Data Reveal the Flavonoid Biosynthesis Metabolic Pathway in Semen Ziziphi Spinosae Using Transcriptomic and Metabolomic
    Tian, Wei
    Liu, Lingdi
    Song, Zhongxing
    Tang, Zhishu
    Wen, Chunxiu
    Jiang, Tao
    PHYTON-INTERNATIONAL JOURNAL OF EXPERIMENTAL BOTANY, 2023, 92 (02) : 369 - 382
  • [6] Integrated Transcriptomic and Metabolomic Analysis Reveals the Molecular Regulatory Mechanism of Flavonoid Biosynthesis in Maize Roots under Lead Stress
    Guo, Zhaolai
    Yuan, Xinqi
    Li, Ting
    Wang, Sichen
    Yu, Yadong
    Liu, Chang'e
    Duan, Changqun
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (11)
  • [7] Exploring the Flavonoid Biosynthesis Pathway of Two Ecotypes of Leymus chinensis Using Transcriptomic and Metabolomic Analysis
    Wu, Haiyan
    Naren, Gaowa
    Han, Chenxu
    Elsheery, Nabil I.
    Zhang, Lingang
    AGRONOMY-BASEL, 2024, 14 (08):
  • [8] Transcriptomic, Proteomic and Metabolomic Analysis of Flavonoid Biosynthesis During Fruit Maturation in Rubus chingii Hu
    Li, Xiaobai
    Jiang, Jingyong
    Chen, Zhen
    Jackson, Aaron
    FRONTIERS IN PLANT SCIENCE, 2021, 12
  • [9] Integrated transcriptomic and metabolomic data reveal the flavonoid biosynthesis metabolic pathway in Perilla frutescens (L.) leaves
    Tao Jiang
    Kunyuan Guo
    Lingdi Liu
    Wei Tian
    Xiaoliang Xie
    Saiqun Wen
    Chunxiu Wen
    Scientific Reports, 10
  • [10] Integrated transcriptomic and metabolomic data reveal the flavonoid biosynthesis metabolic pathway in Perilla frutescens (L.) leaves
    Jiang, Tao
    Guo, Kunyuan
    Liu, Lingdi
    Tian, Wei
    Xie, Xiaoliang
    Wen, Saiqun
    Wen, Chunxiu
    SCIENTIFIC REPORTS, 2020, 10 (01)