A Schwarz lemma of harmonic maps into metric spaces

被引:0
|
作者
Wang, Jie [1 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
来源
ELECTRONIC RESEARCH ARCHIVE | 2024年 / 32卷 / 11期
基金
中国国家自然科学基金;
关键词
harmonic maps; singular spaces; Schwarz lemma; maximum principle; Alexandrov curveture bound;
D O I
10.3934/era.2024276
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We established a Schwarz lemma for harmonic maps from Riemannian manifolds to metric spaces of curvature bounded above in the sense of Alexandrov. We adopted the gradient estimate technique which was based on Zhang-Zhu's maximum principle. In particular, when the domain manifold was a hyperbolic surface, the energy of any conformal harmonic maps into CAT(-1) spaces were bounded from above uniformly.
引用
收藏
页码:5966 / 5974
页数:9
相关论文
共 50 条
  • [1] A converse to the Schwarz lemma for planar harmonic maps
    Brevig, Ole Fredrik
    Ortega-Cerda, Joaquim
    Seip, Kristian
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 497 (02)
  • [2] A Generalization of the Schwarz Lemma for Transversally Harmonic Maps
    Huang, Xin
    Yu, Weike
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (02)
  • [3] A Generalization of the Schwarz Lemma for Transversally Harmonic Maps
    Xin Huang
    Weike Yu
    The Journal of Geometric Analysis, 2024, 34
  • [4] A SCHWARZ LEMMA FOR V-HARMONIC MAPS AND THEIR APPLICATIONS
    Chen, Qun
    Zhao, Guangwen
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2017, 96 (03) : 504 - 512
  • [5] A Schwarz lemma and a Liouville theorem for generalized harmonic maps
    Chen, Qun
    Li, Kaipeng
    Qiu, Hongbing
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 214
  • [6] A GENERALIZATION OF THE SCHWARZ-AHLFORS LEMMA TO THE THEORY OF HARMONIC MAPS
    SHEN, CL
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1984, 348 : 23 - 33
  • [7] SCHWARZ-PICK LEMMA FOR HARMONIC MAPS WHICH ARE CONFORMAL AT A POINT
    Forstneric, Franc
    Kalaj, David
    ANALYSIS & PDE, 2024, 17 (03):
  • [8] ON HARMONIC FUNCTIONS AND THE SCHWARZ LEMMA
    Kalaj, David
    Vuorinen, Matti
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (01) : 161 - 165
  • [9] Schwarz lemma and Schwarz-Pick lemma for solutions of the α-harmonic equation ☆
    Li, Ming
    Ma, Xiu-Shuang
    Wang, Li-Mei
    BULLETIN DES SCIENCES MATHEMATIQUES, 2025, 201
  • [10] Uniqueness theorems for harmonic maps into metric spaces
    Mese, C
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2002, 4 (04) : 725 - 750