Experimental investigation of heavy metal release in entrained-flow biomass gasification

被引:0
|
作者
Ritz, Marlon [1 ]
Dossow, Marcel [1 ]
Moertenkoetter, Hendrik [1 ]
Spliethoff, Hartmut [1 ]
Fendt, Sebastian [1 ]
机构
[1] Tech Univ Munich, Chair Energy Syst, Boltzmannstr 15,Garching b, D-85738 Munich, Germany
基金
欧盟地平线“2020”;
关键词
Phytoremediation; Contaminated land; Biomass-to-liquid; Advanced biofuels; Entrained flow gasification; THERMAL-TREATMENT; PYROLYSIS; FATE; COMBUSTION; ELEMENTS; BIOCHAR; SYNGAS;
D O I
10.1016/j.fuel.2025.134379
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Entrained-flow gasification (EFG) of heavy-metal contaminated biomass from phytoremediation sites into biofuels via Biomass-to-Liquid (BtL) processes combines the two targets of recovering contaminated land for agricultural use and producing clean and sustainable biofuels with little risk of indirect land use change (ILUC). However, research on the fate of heavy metals during industrially relevant EFG of biomass is limited. In this study, methods to measure and predict the release of heavy metals during gasification were investigated and validated with experimental gasification results. For this purpose, an electrothermal vaporization coupled with inductively coupled plasma optical emission spectrometry (ETV-ICP-OES) unit was applied to measure the phase transition behavior of heavy metals (Cd, Cr, Ni, Pb, Zn) during biomass gasification fast and reliably. Pyrolysis and EFG experiments were conducted to validate these measurements. These findings were complemented by thermodynamic modeling using FactSage, demonstrating good agreement with experimental data at elevated temperatures, while lower release temperatures were predicted for volatile elements. Experimental and simulation results revealed that Cd, Pb, and Zn show volatile behavior and are entirely volatilized during entrained-flow gasification. The other heavy metals are rather non-volatile and are only partly released during gasification. The study underscores the release behavior's dependency on gasification conditions and reactor design, emphasizing the need for further research to optimize process efficiency and environmental safety.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Experimental research on pyrolysis for entrained-flow gasification of biomass
    Xiao, Ruirui
    Li, Peng
    Chen, Xueli
    Yu, Guangsuo
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2010, 31 (02): : 228 - 232
  • [2] Characterization of biomass comminution for entrained-flow gasification
    Lu, Haifeng
    Bian, Yao
    Guo, Xiaolei
    Liu, Haifeng
    BIOMASS & BIOENERGY, 2024, 191
  • [3] Pyrolysis pretreatment of biomass for entrained-flow gasification
    Xiao, Ruirui
    Chen, Xueli
    Wang, Fuchen
    Yu, Guangsuo
    APPLIED ENERGY, 2010, 87 (01) : 149 - 155
  • [4] Thermodynamic modeling modification and experimental validation of entrained-flow gasification of biomass
    Liao, Lei
    Zheng, Jinhao
    Li, Chongcong
    Liu, Rui
    Zhang, Yan
    JOURNAL OF THE ENERGY INSTITUTE, 2022, 103 : 160 - 168
  • [5] Impact of torrefaction on entrained-flow gasification of pine sawdust: An experimental investigation
    Liao, Lei
    Zheng, Jinhao
    Zhang, Yan
    Li, Chongcong
    Yuan, Changqi
    FUEL, 2021, 289
  • [6] The Release Behavior of Potassium and Sodium in the Biomass High-temperature Entrained-flow Gasification
    Chen, Qing
    Zhou, Jinsong
    Mei, Qinfeng
    Luo, Zhongyang
    FRONTIERS OF GREEN BUILDING, MATERIALS AND CIVIL ENGINEERING, PTS 1-8, 2011, 71-78 : 2434 - 2441
  • [7] Experimental characterization of particle-wall interaction relevant to entrained-flow gasification of biomass
    Troiano, Maurizio
    Montagnaro, Fabio
    Salatino, Piero
    Solimene, Roberto
    FUEL, 2017, 209 : 674 - 684
  • [8] Atmospheric entrained-flow gasification of biomass and lignite for decentralized applications
    Schneider, Jens
    Grube, Christian
    Herrmann, Andre
    Roensch, Stefan
    FUEL PROCESSING TECHNOLOGY, 2016, 152 : 72 - 82
  • [9] Parametrization of a Sectional Approach for the Entrained-Flow Gasification of Biomass Char
    Fradet, Quentin
    Braun-Unkhoff, Marina
    Riedel, Uwe
    Fradet, Quentin (quentin.fradet@dlr.de), 2021, American Chemical Society (35): : 15752 - 15769
  • [10] Parametrization of a Sectional Approach for the Entrained-Flow Gasification of Biomass Char
    Fradet, Quentin
    Braun-Unkhoff, Marina
    Riedel, Uwe
    ENERGY & FUELS, 2021, 35 (19) : 15752 - 15769