What makes companies zombie? Detecting the most important zombification feature using tree-based machine learning

被引:0
|
作者
Brahmana, Rayenda Khresna [1 ]
机构
[1] Coventry Univ, Sch Econ Finance & Accounting, Coventry CV1 5DL, England
关键词
Zombie Companies; Firm Characteristics; Feature Analysis; Machine Learning; Tree-based models; VARIABLE SELECTION; RANDOM FOREST; FIRMS; LASSO; REGRESSION; CAPACITY; MODELS;
D O I
10.1016/j.eswa.2025.126538
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Tree-based machine learning models are crucial for identifying key features of company zombification, which remain underexplored in current literature focused solely on determinants. This study addresses this gap by employing machine learning feature analysis to identify and analyze the critical factors driving zombification, offering a fresh and data-driven perspective on the issue. Three different feature sets are examined: (i) Feature Zoo, (ii) Logistic regression-based, and (iii) Lasso-based features, focusing on critical internal characteristics of firms. These feature sets are applied to four tree-based algorithms-Decision Tree, Random Forest, Gradient Boosting Model, and XGBoost-chosen for their white model capabilities, allowing the feature extractions. The results indicate that Debt and ROA consistently have the highest feature scores, suggesting they are crucial for predicting zombie companies. Additionally, the Lasso-based feature sets provide the best evaluation metrics, indicating that the two-step filtering process effectively improves the predictive model for zombie companies. The study enriches the literature by extending the anatomy of zombie companies with a more advanced approach. The results also address Debt and ROA as the most significant features for identifying zombie firms. Managers and policymakers should prioritize monitoring Debt and ROA as early warning indicators for company zombification.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Detecting Generic Network Intrusion Attacks using Tree-based Machine Learning Methods
    Alsariera, Yazan Ahmad
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (02) : 597 - 603
  • [2] Tree-based Supervised Machine Learning Models For Detecting GPS Spoofing Attacks on UAS
    Aissou, Ghilas
    Slimane, Hadjar Ould
    Benouadah, Selma
    Kaabouch, Naima
    2021 IEEE 12TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2021, : 649 - 653
  • [3] Forecasting solar stock prices using tree-based machine learning classification: How important are silver prices?
    Sadorsky, Perry
    NORTH AMERICAN JOURNAL OF ECONOMICS AND FINANCE, 2022, 61
  • [4] Classification of Liver Disease Using Conventional Tree-Based Machine Learning Approaches with Feature Prioritization Using a Heuristic Algorithm
    Mondal, Proloy Kumar
    Byeon, Haewon
    International Journal of Advanced Computer Science and Applications, 2024, 15 (11) : 357 - 363
  • [5] Uncovering Sociological Effect Heterogeneity Using Tree-Based Machine Learning
    Brand, Jennie E.
    Xu, Jiahui
    Koch, Bernard
    Geraldo, Pablo
    SOCIOLOGICAL METHODOLOGY, VOL 51, ISSUE 2, 2021, 51 (02): : 189 - 223
  • [6] Land subsidence modelling using tree-based machine learning algorithms
    Rahmati, Omid
    Falah, Fatemeh
    Naghibi, Seyed Amir
    Biggs, Trent
    Soltani, Milad
    Deo, Ravinesh C.
    Cerda, Artemi
    Mohammadi, Farnoush
    Dieu Tien Bui
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 672 : 239 - 252
  • [7] Extending Tree-Based Automated Machine Learning to Biomedical Image and Text Data Using Custom Feature Extractors
    Kumar, Rachit
    Romano, Joseph D.
    Ritchie, Marylyn D.
    Moore, Jason H.
    PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2023 COMPANION, 2023, : 599 - 602
  • [8] Malware Detection Method using Tree-based Machine Learning Algorithms
    Okada, Satoshi
    Matsuda, Wataru
    Fujimoto, Mariko
    Mitsunaga, Takuho
    2021 IEEE INTERNATIONAL CONFERENCE ON COMPUTING (ICOCO), 2021, : 103 - 108
  • [9] Scaling tree-based automated machine learning to biomedical big data with a feature set selector
    Le, Trang T.
    Fu, Weixuan
    Moore, Jason H.
    BIOINFORMATICS, 2020, 36 (01) : 250 - 256
  • [10] Flood susceptibility prediction using tree-based machine learning models in the GBA
    Lyu, Hai -Min
    Yin, Zhen-Yu
    SUSTAINABLE CITIES AND SOCIETY, 2023, 97