A note on e-values and multiple testing

被引:0
|
作者
Li, Guanxun [1 ]
Zhang, Xianyang [2 ]
机构
[1] Beijing Normal Univ Zhuhai, Dept Stat, 18 Jinfeng Rd, Zhuhai 519087, Guangdong, Peoples R China
[2] Texas A&M Univ, Dept Stat, 400 Bizzell St, College Stn, TX 77843 USA
关键词
Benjamini-Hochberg procedure; E-value; False discovery rate; Leave-one-out analysis; Multiple testing; FALSE DISCOVERY RATE;
D O I
10.1093/biomet/asae050
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We discover a connection between the Benjamini-Hochberg procedure and the e-Benjamini-Hochberg procedure (Wang & Ramdas, 2022) with a suitably defined set of e-values. This insight extends to Storey's procedure and generalized versions of the Benjamini-Hochberg procedure and the model-free multiple testing procedure of Barber & Cand & eacute;s (2015) with a general form of rejection rules. We further summarize these findings in a unified form. These connections open up new possibilities for designing multiple testing procedures in various contexts by aggregating e-values from different procedures or assembling e-values from different data subsets.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] E-values, Multiple Testing and Beyond
    Li, Guanxun
    Zhang, Xianyang
    arXiv, 2023,
  • [2] Online multiple testing with e-values
    Xu, Ziyu
    Ramdas, Aaditya
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238, 2024, 238
  • [3] E-values as unnormalized weights in multiple testing
    Ignatiadis, Nikolaos
    Wang, Ruodu
    Ramdas, Aaditya
    BIOMETRIKA, 2024, 111 (02) : 417 - 439
  • [4] Confidence and Discoveries with E-values
    Vovk, Vladimir
    Wang, Ruodu
    STATISTICAL SCIENCE, 2023, 38 (02) : 329 - 354
  • [5] Testing exchangeability in the batch mode with e-values and Markov alternatives
    Vovk, Vladimir
    MACHINE LEARNING, 2025, 114 (04)
  • [6] Testing with p*-values: Between p-values, mid p-values, and e-values
    Wang, Ruodu
    BERNOULLI, 2024, 30 (02) : 1313 - 1346
  • [7] E-Values for Mendelian Randomization
    Swanson, Sonja A.
    VanderWeele, Tyler J.
    EPIDEMIOLOGY, 2020, 31 (03) : E23 - E24
  • [8] E-VALUES: CALIBRATION, COMBINATION AND APPLICATIONS
    Vovk, Vladimir
    Wang, Ruodu
    ANNALS OF STATISTICS, 2021, 49 (03): : 1736 - 1754
  • [9] Concerning the accuracy of MAST E-values
    Bailey, TL
    Gribskov, M
    BIOINFORMATICS, 2000, 16 (05) : 488 - 489
  • [10] Feature Selection using e-values
    Majumdar, Subhabrata
    Chatterjee, Snigdhansu
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,