Induced Orthogonality in Semilattices with 0 and in Pseudocomplemented Lattices and Posets

被引:0
|
作者
Chajda, Ivan [1 ]
Kolarik, Miroslav [2 ]
Laenger, Helmut [1 ,3 ]
机构
[1] Palacky Univ Olomouc, Fac Sci, Dept Algebra & Geometry, 17 Listopadu 12, Olomouc 77146, Czech Republic
[2] Palacky Univ Olomouc, Fac Sci, Dept Comp Sci, 17 Listopadu 12, Olomouc 77146, Czech Republic
[3] TU Wien, Inst Discrete Math & Geometry, Fac Math & Geoinformat, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
关键词
Meet-semilattice; Lattice; Orthogonality; Closed subset; Ortholattice; Boolean algebra; Pseudocomplemented lattice; Pseudocomplemented poset;
D O I
10.1007/s11083-025-09696-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
On an arbitrary meet-semilattice S=(S,boolean AND,0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{S}=(S,\wedge ,0)$$\end{document} with 0 we define an orthogonality relation and investigate the lattice Cl(S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{{\textbf {Cl}}}\,}}({\textbf {S}})$$\end{document} of all subsets of S closed under this orthogonality. We show that if S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{S}$$\end{document} is atomic then Cl(S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{{\textbf {Cl}}}\,}}(\textbf{S})$$\end{document} is a complete atomic Boolean algebra. If S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{S}$$\end{document} is a pseudocomplemented lattice, this orthogonality relation can be defined by means of the pseudocomplementation. Finally, we show that if S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{S}$$\end{document} is a complete pseudocomplemented lattice then Cl(S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{{\textbf {Cl}}}\,}}(\textbf{S})$$\end{document} is a complete Boolean algebra. For pseudocomplemented posets a similar result holds if the subset of pseudocomplements forms a complete lattice satisfying a certain compatibility condition.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Congruence Lattices of Pseudocomplemented Semilattices
    Tibor Katriňák
    Semigroup Forum, 1997, 55 : 1 - 23
  • [2] Congruence lattices of pseudocomplemented semilattices
    Katrinak, T
    SEMIGROUP FORUM, 1997, 55 (01) : 1 - 23
  • [3] CONGRUENCE LATTICES OF PSEUDOCOMPLEMENTED SEMILATTICES
    SANKAPPA.HP
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (05): : A479 - A480
  • [4] Filters and congruences in sectionally pseudocomplemented lattices and posets
    Ivan Chajda
    Helmut Länger
    Soft Computing, 2021, 25 : 8827 - 8837
  • [5] Filters and congruences in sectionally pseudocomplemented lattices and posets
    Chajda, Ivan
    Laenger, Helmut
    SOFT COMPUTING, 2021, 25 (14) : 8827 - 8837
  • [6] JOIN-SEMILATTICES WHOSE PRINCIPAL FILTERS ARE PSEUDOCOMPLEMENTED LATTICES
    Chajda, Ivan
    Langer, Helmut
    MISKOLC MATHEMATICAL NOTES, 2022, 23 (02) : 559 - 577
  • [7] QUASIVARIETIES OF PSEUDOCOMPLEMENTED SEMILATTICES
    ADAMS, ME
    DZIOBIAK, W
    GOULD, M
    SCHMID, J
    FUNDAMENTA MATHEMATICAE, 1995, 146 (03) : 295 - 312
  • [8] DISTRIBUTIVE PSEUDOCOMPLEMENTED SEMILATTICES
    Celani, Sergio A.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2010, 3 (01) : 21 - 30
  • [9] FREE PSEUDOCOMPLEMENTED SEMILATTICES
    BALBES, R
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (07): : 1094 - &
  • [10] Sectionally Pseudocomplemented Posets
    Ivan Chajda
    Helmut Länger
    Jan Paseka
    Order, 2021, 38 : 527 - 546