Rapid and effective removal of heavy metal ions from aqueous solution using nanostructured

被引:0
|
作者
Ghasemi, Homa [1 ,2 ]
Afshang, Mehrnoosh [3 ]
Gilvari, Tazkieh [2 ]
Aghabarari, Behzad [2 ]
Mozaffari, Saeed [4 ]
机构
[1] Univ Wisconsin Milwaukee, Coll Engn & Appl Sci, Dept Mat Sci & Engn, Milwaukee, WI USA
[2] Mat & Energy Res Ctr, Dept Nanotechnol & Adv Mat, Karaj, Iran
[3] Lehigh Univ, Dept Chem & Biomol Engn, Bethlehem, PA USA
[4] Virginia Polytech Inst & State Univ, Dept Chem Engn, Blacksburg, VA 24061 USA
来源
关键词
Natural clays; Heavy metal ions; Natural adsorbent; Adsorption capacity; Langmuir and Freundlich isotherms; ADSORPTION-ISOTHERMS; LEAD(II) ADSORPTION; WATER; PB(II); MODELS; CADMIUM(II); ADSORBENTS; MECHANISMS; KAOLINITE; CAPACITY;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Natural mineral clays were extracted from the Syahkalahan mine and used as adsorbent matrices with the aim of removing lead ions (Pb) from drinking water. In this study, the chemical structure, surface morphology, and surface area of prepared clays were characterized using various techniques, including inductively coupled plasma-mass spectrometry, powder X-ray diffraction, field emission scanning electron microscopy (FE-SEM), and Brunauer-Emmett-Teller surface porosity analysis. Characterization results revealed that silica is the dominant chemical component of the clay. FE-SEM images of clay samples confirmed that the average size of clay's particles is in the nanoscale range. The results for two different clays showed ion removal efficiency of > 92% under the following experimental conditions: clay weight = 1 g, [Pb(II)] =100 ppm, pH = 7, and time = 120 min. Additionally, for the clay samples exhibiting the best removal efficiency, the ion removal efficiency was studied as a function of reaction parameters such as pH, and concentration of both adsorbent and metal ions. To evaluate the adsorption kinetics and mechanism of ion adsorption, kinetic modeling and isotherm models (Langmuir and Freundlich) were performed under the optimized conditions. Based on the fitting analysis, it can be inferred that the adsorption kinetic follows a pseudo-first-order model and the Langmuir isotherm accurately describes the adsorption mechanism of Pb(II) ions on the clays' surface. These findings further highlight that these inexpensive natural clays can be used as excellent matrices for the adsorption of heavy metal ions in various water treatment systems.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Removal of heavy metal ions from aqueous solution by using calcium carbonate
    Oner, Mualla
    Dogan, Ozlem
    Galip, Serhan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [2] Removal of Heavy Metal Ions from Aqueous Solution Using Biotransformed Lignite
    Cheng, Jianguo
    Zhang, Shanfei
    Fang, Chen
    Ma, Litong
    Duan, Jianguo
    Fang, Xu
    Li, Rihong
    MOLECULES, 2023, 28 (13):
  • [3] Removal of heavy metal ions from aqueous solution using red loess as an adsorbent
    Shengtao XingMeiqing ZhaoZichuan Ma College of Chemistry and Material SciencesHebei Normal UniversityShijiazhuang China
    Journal of Environmental Sciences, 2011, 23 (09) : 1497 - 1502
  • [4] Removal of heavy metal ions from aqueous solution using red loess as an adsorbent
    Xing, Shengtao
    Zhao, Meiqing
    Ma, Zichuan
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2011, 23 (09) : 1497 - 1502
  • [5] Using Modified Fly Ash for Removal of Heavy Metal Ions from Aqueous Solution
    Nguyen, Thuy Chinh
    Tran, Trang Do Mai
    Dao, Van Bay
    Vu, Quoc-Trung
    Nguyen, Trinh Duy
    Thai, Hoang
    JOURNAL OF CHEMISTRY, 2020, 2020
  • [7] Kinetic study on removal of heavy metal ions from aqueous solution by using soil
    Lim, Soh-Fong
    Lee, Agnes Yung Weng
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2015, 22 (13) : 10144 - 10158
  • [8] Kinetic study on removal of heavy metal ions from aqueous solution by using soil
    Soh-Fong Lim
    Agnes Yung Weng Lee
    Environmental Science and Pollution Research, 2015, 22 : 10144 - 10158
  • [9] Removal of heavy metal ions from aqueous solution by modified barks
    Gloaguen, V.
    Morvan, H.
    1997, Marcel Dekker Inc, New York, NY, United States (A32):
  • [10] Removal of heavy metal ions from aqueous solution by modified barks
    Gloaguen, V
    Morvan, H
    JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH PART A-ENVIRONMENTAL SCIENCE AND ENGINEERING & TOXIC AND HAZARDOUS SUBSTANCE CONTROL, 1997, 32 (04): : 901 - 912