Co dimension two torus actions on the affine space

被引:0
|
作者
Liendo, Alvaro [1 ]
Petitjean, Charlie [2 ]
机构
[1] Univ Talca, Inst Matemat, Talca, Chile
[2] Univ Bourgogne Europe, Dijon, France
关键词
Linearization conjecture; Affine varieties; Contractible varieties; Torus actions; CONTRACTILE THREEFOLDS; HYPERSURFACES;
D O I
10.1016/j.jpaa.2025.107911
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we classify smooth, contractible affine varieties equipped with faithful torus actions of complexity two, having a unique fixed point and a two-dimensional algebraic quotient isomorphic to a toric blow-up of a toric surface. These varieties are of particular interest as they represent the simplest candidates for potential counterexamples to the linearization conjecture in affine geometry. (c) 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Torus actions, Morse homology, and the Hilbert scheme of points on affine space
    Totaro, Burt
    EPIJOURNAL DE GEOMETRIE ALGEBRIQUE, 2021, 5
  • [2] Torus actions on quotients of affine spaces
    Brecan, Ana-Maria
    Franzen, Hans
    EPIJOURNAL DE GEOMETRIE ALGEBRIQUE, 2023, 7
  • [3] Algebraic torus actions on affine algebraic surfaces
    Tanimoto, R
    JOURNAL OF ALGEBRA, 2005, 285 (01) : 73 - 97
  • [4] Affine pseudo-planes with torus actions
    Masayoshi Miyanishi
    Kayo Masuda
    Transformation Groups, 2006, 11 : 249 - 267
  • [5] COMPLETE ORBIT SPACES OF AFFINE TORUS ACTIONS
    Hausen, Juergen
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2009, 20 (01) : 123 - 137
  • [6] Affine pseudo-planes with torus actions
    Miyanishi, Masayoshi
    Masuda, Kayo
    TRANSFORMATION GROUPS, 2006, 11 (02) : 249 - 267
  • [7] Real torus actions on real affine algebraic varieties
    Pierre-Alexandre Gillard
    Mathematische Zeitschrift, 2022, 301 : 1507 - 1536
  • [8] Gluing Affine Torus Actions Via Divisorial Fans
    Klaus Altmann
    Jürgen Hausen
    Hendrik Süss
    Transformation Groups, 2008, 13 : 215 - 242
  • [9] Gluing affine torus actions via divisorial fans
    Altmann, Klaus
    Hausen, Juergen
    Suess, Hendrik
    TRANSFORMATION GROUPS, 2008, 13 (02) : 215 - 242
  • [10] Hausdorff dimension of affine random covering sets in torus
    Jarvenpaa, Esa
    Jarvenpaa, Maarit
    Koivusalo, Henna
    Li, Bing
    Suomala, Ville
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2014, 50 (04): : 1371 - 1384