Ricci curvature bounded below and uniform rectifiability

被引:0
|
作者
Hyde, Matthew [1 ]
Villa, Michele [2 ,3 ]
Violo, Ivan yuri [4 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, POB 35 MaD, FI-40014 Jyvaskyla, Finland
[2] Univ Oulu, Math Res Unit, FI-90014 Oulu, Finland
[3] Univ Autonoma Barcelona, Dept Matematiques, Bellaterra 08193, Barcelona, Spain
[4] Ctr Ric Matemat Ennio Giorgi, Scuola Normale Super, Piazza Cavalieri 3, I-56100 Pisa, Italy
来源
ANNALES FENNICI MATHEMATICI | 2024年 / 49卷 / 02期
基金
欧洲研究理事会; 芬兰科学院; 欧盟地平线“2020”;
关键词
Uniform rectifiability; metric spaces; Ricci curvature; Lipschitz functions; METRIC-MEASURE-SPACES; ANALYTIC CAPACITY; ALEXANDROV; RIGIDITY; BEHAVIOR; OPERATOR; LIMITS;
D O I
10.54330/afm.153338
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that Ahlfors-regular RCD spaces are uniformly rectifiable and satisfy the Bilateral Weak Geometric Lemma with Euclidean tangents-a quantitative flatness condition. The same is shown for Ahlfors regular boundaries of non-collapsed RCD spaces. As an application we deduce a type of quantitative differentiation for Lipschitz functions on these spaces.
引用
收藏
页码:751 / 772
页数:22
相关论文
共 50 条