Ni and ZrO2 promotion of In2O3 for CO2 hydrogenation to methanol

被引:3
|
作者
Liu, Liang [1 ]
Gao, Yu [1 ]
Zhang, Hao [1 ]
Kosinov, Nikolay [1 ]
Hensen, Emiel J. M. [1 ]
机构
[1] Eindhoven Univ Technol, Dept Chem Engn & Chem, Lab Inorgan Mat & Catalysis, POB 513, NL-5600 MB Eindhoven, Netherlands
关键词
CO2; hydrogenation; Methanol synthesis; Promoter role; Indium-based catalysts; CATALYST; OXIDE; METHANATION; DIOXIDE;
D O I
10.1016/j.apcatb.2024.124210
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Transition metals, such as Ni, Pd, and Pt, and ZrO2 are known as efficient promoters in M-In2O3-ZrO2 catalysts for CO2 hydrogenation to methanol. Herein, we systematically investigated the role of Ni and ZrO2 promoters by preparing ternary NiO-In2O3-ZrO2 catalysts and binary counterparts by flame spray pyrolysis. The highest methanol rate was obtained for the Ni(6 wt%)-In2O3(31 wt%)-ZrO2(63 wt%) composition. DRIFTS-SSITKA shows that formate is the key intermediate in the hydrogenation of CO2 to methanol. Kinetic analysis shows the competition between methanol and CO formation. The rate-limiting step in methanol formation is likely the hydrogenation of surface methoxy species. Ni and ZrO2 play different promoting roles without showing synergy with respect to each other. Ni promotes hydrogenation of surface formate and methoxy species, while ZrO2 maintains a high In2O3 dispersion, the smaller In2O3 size likely stabilizing formate and other intermediates during their conversion to methanol.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Improvement in the activity of Ni/In2O3 with the addition of ZrO2 for CO2 hydrogenation to methanol
    Zhang, Zhitao
    Shen, Chenyang
    Sun, Kaihang
    Liu, Chang-Jun
    CATALYSIS COMMUNICATIONS, 2022, 162
  • [2] Al Promotion of In2O3 for CO2 Hydrogenation to Methanol
    Liu, Liang
    Mezari, Brahim
    Kosinov, Nikolay
    Hensen, Emiel J. M.
    ACS CATALYSIS, 2023, 13 (24) : 15730 - 15745
  • [3] ZrO2 promoted Ru/In2O3 catalyst for selective hydrogenation of CO2 to methanol
    Xiong, Shilong
    Lu, Zhe
    Shen, Chenyang
    Liu, Chang-jun
    CHEMICAL ENGINEERING SCIENCE, 2023, 282
  • [4] CO2 hydrogenation to methanol over Rh/In2O3–ZrO2 catalyst with improved activity
    Zhe Lu
    Jing Wang
    Kaihang Sun
    Shilong Xiong
    Zhitao Zhang
    Chang-jun Liu
    GreenChemicalEngineering, 2022, 3 (02) : 165 - 170
  • [5] Influence of electronic and structural properties on Au/In2O3/ZrO2 catalysts for CO2 hydrogenation to methanol
    Augusto, Thiago de M.
    Blay-Roger, Ruben
    Petrolini, Davi D.
    Ferreira, Breno F.
    Santos, Joao Batista O.
    Ramirez, Carlos O.
    Clet, Guillaume
    Ivanova, Svetlana
    Odriozola, Jose A.
    Bobadilla, Luis F.
    Llorca, Jordi
    Bueno, Jose Maria C.
    CHEMICAL ENGINEERING JOURNAL, 2025, 505
  • [6] The Promoting Role of Ni on In2O3 for CO2 Hydrogenation to Methanol
    Cannizzaro, Francesco
    Hensen, Emiel J. M.
    Filot, Ivo A. W.
    ACS CATALYSIS, 2023, 13 (03) : 1875 - 1892
  • [7] CO2 hydrogenation to methanol at high reaction temperatures over In2O3/ ZrO2 catalysts: Influence of calcination temperatures of ZrO2 support
    Numpilai, Thanapha
    Kidkhunthod, Pinit
    Cheng, Chin Kui
    Wattanakit, Chularat
    Chareonpanich, Metta
    Limtrakul, Jumras
    Witoon, Thongthai
    CATALYSIS TODAY, 2021, 375 : 298 - 306
  • [8] Theoretical study of methanol synthesis from CO2 and CO hydrogenation on the surface of ZrO2 supported In2O3 catalyst
    Dou, Maobin
    Zhang, Minhua
    Chen, Yifei
    Yu, Yingzhe
    SURFACE SCIENCE, 2018, 672 : 7 - 12
  • [9] Theoretical study of the promotional effect of ZrO2 on In2O3 catalyzed methanol synthesis from CO2 hydrogenation
    Zhang, Minhua
    Dou, Maobin
    Yu, Yingzhe
    APPLIED SURFACE SCIENCE, 2018, 433 : 780 - 789
  • [10] CO2 Hydrogenation to Methanol in a Slurry Reactor: Catalytic Performance of CuO-Enhanced In2O3/ZrO2
    Guan, Jingyuan
    Saherwala, Arav
    Vijayakumar, Varshiga
    Pjontek, Dominic
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2024, 63 (04) : 1814 - 1825