SeBot: Structural Entropy Guided Multi-View Contrastive Learning for Social Bot Detection

被引:2
|
作者
Yang, Yingguang [1 ]
Wu, Qi [1 ]
He, Buyun [1 ]
Peng, Hao [2 ]
Yang, Renyu [2 ]
Hao, Zhifeng [3 ]
Liao, Yong [1 ]
机构
[1] Univ Sci & Technol China, Hefei, Peoples R China
[2] Beihang Univ, Beijing, Peoples R China
[3] Shantou Univ, Shantou, Peoples R China
来源
PROCEEDINGS OF THE 30TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2024 | 2024年
基金
北京市自然科学基金;
关键词
social bot detection; graph neural networks; contrastive learning; structural entropy;
D O I
10.1145/3637528.3671871
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recent advancements in social bot detection have been driven by the adoption of Graph Neural Networks. The social graph, constructed from social network interactions, contains benign and bot accounts that influence each other. However, previous graph-based detection methods that follow the transductive message-passing paradigm may not fully utilize hidden graph information and are vulnerable to adversarial bot behavior. The indiscriminate message passing between nodes from different categories and communities results in excessively homogeneous node representations, ultimately reducing the effectiveness of social bot detectors. In this paper, we propose SeBot, a novel multi-view graph-based contrastive learning-enabled social bot detector. In particular, we use structural entropy as an uncertainty metric to optimize the entire graph's structure and subgraph-level granularity, revealing the implicitly existing hierarchical community structure. And we design an encoder to enable message passing beyond the homophily assumption, enhancing robustness to adversarial behaviors of social bots. Finally, we employ multi-view contrastive learning to maximize mutual information between different views and enhance the detection performance through multi-task learning. Experimental results demonstrate that our approach significantly improves the performance of social bot detection compared with SOTA methods.
引用
收藏
页码:3841 / 3852
页数:12
相关论文
共 50 条
  • [1] Multi-view graph contrastive learning for social recommendation
    Chen, Rui
    Chen, Jialu
    Gan, Xianghua
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [2] A Clustering-Guided Contrastive Fusion for Multi-View Representation Learning
    Ke, Guanzhou
    Chao, Guoqing
    Wang, Xiaoli
    Xu, Chenyang
    Zhu, Yongqi
    Yu, Yang
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (04) : 2056 - 2069
  • [3] Contrastive Multi-View Kernel Learning
    Liu, Jiyuan
    Liu, Xinwang
    Yang, Yuexiang
    Liao, Qing
    Xia, Yuanqing
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (08) : 9552 - 9566
  • [4] Enhancing Multi-view Contrastive Learning for Graph Anomaly Detection
    Lu, Qingcheng
    Wu, Nannan
    Zhao, Yiming
    Wang, Wenjun
    Zu, Quannan
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, PT VI, DASFAA 2024, 2024, 14855 : 236 - 251
  • [5] Multi-view dreaming: multi-view world model with contrastive learning
    Kinose A.
    Okumura R.
    Okada M.
    Taniguchi T.
    Advanced Robotics, 2023, 37 (19) : 1212 - 1220
  • [6] Multi-view contrastive learning with virtual social group influence for social recommendation
    Zhang, Chunkai
    Li, Guoqing
    Zhang, Hanyu
    KNOWLEDGE-BASED SYSTEMS, 2024, 294
  • [7] Structure-guided feature and cluster contrastive learning for multi-view clustering
    Shu, Zhenqiu
    Li, Bin
    Mao, Cunli
    Gao, Shengxiang
    Yu, Zhengtao
    NEUROCOMPUTING, 2024, 582
  • [8] Adaptive structural-guided multi-level representation learning with graph contrastive for incomplete multi-view clustering
    Wang, Haiyue
    Zhang, Wensheng
    Wang, Quan
    Ma, Xiaoke
    INFORMATION FUSION, 2025, 119
  • [9] Dual contrastive learning for multi-view clustering
    Bao, Yichen
    Zhao, Wenhui
    Zhao, Qin
    Gao, Quanxue
    Yang, Ming
    NEUROCOMPUTING, 2024, 599
  • [10] Multi-view Contrastive Learning Network for Recommendation
    Bu, Xiya
    Ma, Ruixin
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT IX, 2024, 14433 : 319 - 330