Leveraging Modality-Specific Representations for Audio-Visual Speech Recognition via Reinforcement Learning

被引:0
|
作者
Chen, Chen [1 ]
Hu, Yuchen [1 ]
Zhang, Qiang [2 ,3 ]
Zou, Heqing [1 ]
Zhu, Beier [1 ]
Chng, Eng Siong [1 ]
机构
[1] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore, Singapore
[2] ZJU Hangzhou Global Sci & Technol Innovat Ctr, Hangzhou, Peoples R China
[3] Zhejiang Univ, Coll Comp Sci & Technol, Hangzhou, Peoples R China
基金
新加坡国家研究基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Audio-visual speech recognition (AVSR) has gained remarkable success for ameliorating the noise-robustness of speech recognition. Mainstream methods focus on fusing audio and visual inputs to obtain modality-invariant representations. However, such representations are prone to over-reliance on audio modality as it is much easier to recognize than video modality in clean conditions. As a result, the AVSR model underestimates the importance of visual stream in face of noise corruption. To this end, we leverage visual modality-specific representations to provide stable complementary information for the AVSR task. Specifically, we propose a reinforcement learning (RL) based framework called MSRL, where the agent dynamically harmonizes modality-invariant and modality-specific representations in the auto-regressive decoding process. We customize a reward function directly related to task-specific metrics (i.e., word error rate), which encourages the MSRL to effectively explore the optimal integration strategy. Experimental results on the LRS3 dataset show that the proposed method achieves state-of-the-art in both clean and various noisy conditions. Furthermore, we demonstrate the better generality of MSRL system than other baselines when test set contains unseen noises.
引用
收藏
页码:12607 / +
页数:10
相关论文
共 50 条
  • [1] LEARNING CONTEXTUALLY FUSED AUDIO-VISUAL REPRESENTATIONS FOR AUDIO-VISUAL SPEECH RECOGNITION
    Zhang, Zi-Qiang
    Zhang, Jie
    Zhang, Jian-Shu
    Wu, Ming-Hui
    Fang, Xin
    Dai, Li-Rong
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 1346 - 1350
  • [3] Leveraging Unimodal Self-Supervised Learning for Multimodal Audio-Visual Speech Recognition
    Pan, Xichen
    Chen, Peiyu
    Gong, Yichen
    Zhou, Helong
    Wang, Xinbing
    Lin, Zhouhan
    PROCEEDINGS OF THE 60TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), VOL 1: (LONG PAPERS), 2022, : 4491 - 4503
  • [4] DEEP MULTIMODAL LEARNING FOR AUDIO-VISUAL SPEECH RECOGNITION
    Mroueh, Youssef
    Marcheret, Etienne
    Goel, Vaibhava
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 2130 - 2134
  • [5] Audio-visual speech recognition using deep learning
    Noda, Kuniaki
    Yamaguchi, Yuki
    Nakadai, Kazuhiro
    Okuno, Hiroshi G.
    Ogata, Tetsuya
    APPLIED INTELLIGENCE, 2015, 42 (04) : 722 - 737
  • [6] Audio-visual speech recognition using deep learning
    Kuniaki Noda
    Yuki Yamaguchi
    Kazuhiro Nakadai
    Hiroshi G. Okuno
    Tetsuya Ogata
    Applied Intelligence, 2015, 42 : 722 - 737
  • [7] MODALITY ATTENTION FOR END-TO-END AUDIO-VISUAL SPEECH RECOGNITION
    Zhou, Pan
    Yang, Wenwen
    Chen, Wei
    Wang, Yanfeng
    Jia, Jia
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 6565 - 6569
  • [8] Audio-visual speech recognition based on joint training with audio-visual speech enhancement for robust speech recognition
    Hwang, Jung-Wook
    Park, Jeongkyun
    Park, Rae-Hong
    Park, Hyung-Min
    APPLIED ACOUSTICS, 2023, 211
  • [9] An audio-visual speech recognition with a new mandarin audio-visual database
    Liao, Wen-Yuan
    Pao, Tsang-Long
    Chen, Yu-Te
    Chang, Tsun-Wei
    INT CONF ON CYBERNETICS AND INFORMATION TECHNOLOGIES, SYSTEMS AND APPLICATIONS/INT CONF ON COMPUTING, COMMUNICATIONS AND CONTROL TECHNOLOGIES, VOL 1, 2007, : 19 - +
  • [10] Audio-Visual Biometric Recognition Via Joint Sparse Representations
    Primorac, Rudi
    Togneri, Roberto
    Bennamoun, Mohammed
    Sohel, Ferdous
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 3031 - 3035